Substrates activity with purine nucleoside phosphorylase (calf spleen, Sigma) was tested as described by Stoeckler and coworkers⁵⁸ using analytical HPLC.

Registry No. 2, 107796-00-9; 5, 107796-01-0; 6, 6129-68-6; 7, 6067-31-8; 8, 88293-57-6; 9, 107712-09-4; 10, 107796-02-1; 11,

(58) Stoeckler, J. D.; Cambor, C.; Parks, R. E., Jr. Biochemistry 1980, 19, 102.

14631-20-0; 12, 107712-10-7; 13, 6027-65-2; 14, 87-42-3; 15, 107712-11-8; 16, 107712-12-9; 17, 107712-13-0; 18, 107712-14-1; 19, 5451-40-1; 20, 107712-15-2; 21, 107712-16-3; 22, 107712-17-4; 23, 107712-18-5; 24, 107712-19-6; 25, 107712-20-9; 26, 107712-21-0; 27, 107712-22-1; 28, 107712-23-2; 29, 107712-24-3; 30, 107712-25-4; 2,4-bis(trimethylsilyl)uracil, 10457-14-4; 1,5-anhydro-2-deoxy-3.4.6-tris-O-(4-nitrobenzovl)-D-ribo-hex-l-enitol. 107796-03-2: bis-O-(trimethylsilyl)-N-acetylcytosine, 107712-26-5; adenosine deaminase, 9026-93-1.

Synthesis and Oral Antifungal Activity of Novel Azolylpropanolones and Related Compounds

Masaru Ogata,*† Hiroshi Matsumoto,† Kimio Takahashi,† Sumio Shimizu,† Shiro Kida,† Akira Murabayashi,† Motoo Shiro,[‡] and Katsuya Tawara*[§]

Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan. Received September 22, 1986

To find orally active antifungal agents, novel imidazolyl- and 1,2,4-triazolylpropanolones I and related compounds II-IV were synthesized. Compounds I were derived from ketones V (method A), α -diketone IX (method B), α -hydroxy ketones X (method C), α -chloro ketone XII (method D), and enones VI (method E). Diols II, synthesized from I with NaBH₄, were cyclized to five-membered cyclic compounds III by using $N_{1}N'$ -carbonyldiimidazole, thionyl chloride, N.N. (thiocarbonyl)diimidazole, bromochloromethane, 2,2-dimethoxypropane, and cyclohexanone dimethyl ketal. Diols IV were synthesized from I by Grignard reaction (method F), hydroxymethylation of X (method G), and reaction of ketones XXI with 1-[(trimethylsily])methyl]-1,2,4-triazole (method H). Compounds I-IV were examined for their antifungal activities in vitro by evaluation of broth dilution MIC values against three species of fungi and the inhibitory effect on pseudomycelium of Candida albicans, and they were examined for oral efficacy in vivo against subacute systemic candidiasis in mice and superficial dermatophytosis in guinea pigs. Compounds 2, 12, 38, 39, and 92 exhibited strong oral antifungal activity. An asymmetric synthesis and the structure-activity relationships of the compounds examined are discussed.

With the advent of ketoconazole,¹ the synthesis of orally active and broad-spectrum antimycotic azoles has been explored actively in recent years.² Nevertheless, there is still a need for more potent and better antimycotic drugs. In recent years, (R,S)-1-(2,4-dichlorophenyl)-1-(4-fluorophenyl)-2-(1,2,4-triazol-1-yl)ethanol, ICI 153066,³ was reported to show oral antifungal activity. Therefore our interest was directed to the synthesis of azolylpropanolones and related compounds with the partial structure of ICI 153066. Here we report the synthesis and antifungal properties of new orally active antifungal agents I-IV.4.5

Chemistry

The synthetic routes (A-E) to the target compounds I are illustrated in Scheme I (Table I). The starting ketones V reacted with N,N,N',N'-tetramethyldiaminomethane in acetic anhydride to give the conjugated ketones VI,⁶ which were oxidized to the epoxy ketones VII with hydrogen peroxide in aqueous NaOH. Compounds VII were then treated with 1,2,4-triazole in the presence of NaH in DMF to obtain a mixture of the desired compounds I and the

isomeric 1,2,4-triazol-4-yl derivatives VIII as minor byproducts (method A). The triazole isomers I and VIII were separable by chromatography. The structure assignment was made by NMR chemical shift of the triazole ring protons.

Reaction of the α -diketones IX with diazomethane gave the oxiranes VII,⁷ which were then treated with 1,2,4triazole in the presence of NaH in DMF to give a mixture of I and VIII (method B).

Hydroxymethylation of the α -hydroxy ketones X with paraformaldehyde in the presence of KHCO3 afforded the primary alcohols, which were treated with p-TsCl to give the tosylate XI. Compound XI was transformed with triethylamine to obtain I and VIII (method C).

Treatment of V with SO₂Cl₂ gave the chloro compounds XII, which were then treated with paraformaldehyde and

- Gravestock, M. B.; Ryley, J. F. In Annual Reports in Medi-(2)cinal Chemistry; Bailey, D. M., Ed.; Academic: Orlando, 1984; p 127 and references cited therein.
- (3) Ryley, J. F.; Willson, R. G. Proceedings, 22nd ICAAC, Miami Beach, FL, 4-6 Oct. 1982; Abstract 477.
- (a) Walter, K.; Elmer, S. Eur. Pat. Appl. 0114567. (b) John (4)Martin, C.; Paul Anthony, W.; Michael Barry, G. Eur. Pat. Appl. 0114 487; Chem. Abstr. 1984, 101, 2305540j.
- (a) Ogata, M.; Matsumoto, H.; Tawara, K. Japan Unexamined (5)Pat. Publn. No. 59 155365, 1984. (b) Ogata, M.; Matsumoto, H.; Tawara, K. Jpn. Unexamined Pat. Publn. No. 59 167573, 1984. (c) Ogata, M.; Matsumoto, H.; Tawara, K. Jpn. Unexamined Pat. Publn. No. 59 199680, 1984. (d) Ogata, M.; Matsumoto, H.; Kida, S.; Tawara, K. Jpn. Unexamined Pat. Publn. No. 60 25990, 1985.
- (6) Takahashi, K.; Shimizu, S.; Ogata, M. Synth. Commun., in press
- Siegel, H.; Wittmann, H. Monatsh. Chem. 1982, 113(8/9), (7)1005.

0022-2623/87/1830-1054\$01.50/0 © 1987 American Chemical Society

[†]Division of Organic Chemistry.

[‡]Division of Physical Chemistry.

[§]Division of Microbiology.

⁽¹⁾ Heeres, J.; Van Cutsem, J. J. Med. Chem. 1981, 24, 1360.

Scheme I

sodium 1,2,4-triazole to give the mixture of I and VIII (method D).

The reaction of VI with 1,2,4-triazole gave the triazolyl ketones XIII⁶ as the sole product, which was subsequently oxidized with air in the presence of K_2CO_3 to give I (method E). This method prevented the production of the undesired isomers VIII. In order to compare the antifungal activities of the two optical isomers of 2, (R)-(-)- and (S)-(+)-1,2-bis(2,4-dichlorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propan-1-one (83 and 84) were synthesized as depicted in Scheme II. The starting conjugated ketone 77 was reduced to the allyl alcohol 78 with $NaBH_4/CeCl_3$ or diisobutylaluminum hydride (DIBAH). Compound 78 was oxidized enantioselectively with (+)-diisopropyl-Ltartrate [(+)-L-DIPT], $Ti(O-i-Pr)_4$ and tert-butyl hydroperoxide (TBHP) by the Sharpless method^{8a-c} to obtain the epoxy alcohol 79 and the allyl alcohol 80. A similar procedure using (-)-D-DIPT, Ti(O-i-Pr)4 and TBHP was carried out with 78 to obtain the epoxy alcohol 81 and the allyl alcohol 82. The enantiomeric epoxy alcohols 79 and 81 were oxidized with pyridinium chlorochromate (PCC) and then treated with sodium 1,2,4-triazole in DMF to obtain the desired levorotory and dextrorotatory triazolylpropiophenone 83 and 84, respectively.

The absolute configuration of the potent isomer 83 was determined by X-ray analysis of the *p*-bromobenzoate 85, and the analysis established that the absolute configuration of 83 is (R)-(-) and that of 84 is (S)-(+) (Figure 1).

Next, we attempted the synthesis of the other antifungal imidazolyl- and 1,2,4-triazolylpropanols II-IV from I. Ketols I were reduced with NaBH₄ to obtain two diastereomeric diols II; one of the pair was the major product (Scheme III, Tables II and III). To confirm the configuration of the diastereomer, diols II (108) (major product) and II (109) (minor product) derived from ketol I (24) were

Figure 1. Molecular structure of 85. Hydrogen atoms have been omitted for clarity.

Figure 2. Molecular structure of 115. Hydrogen atoms have been omitted for clarity.

treated with N,N'-carbonyldiimidazole, and 2-oxo-1,3-dioxolanes III (115) and III (116) were obtained, respectively. X-ray analysis of 115 demonstrated that both chlorosubstituted-phenyl nuclei were of the trans configuration (Figure 2). This indicated the configuration of 108 (major product) to be the erythro form and that of 109 (minor product) to be the threo form. The major product diol can be distinguished from the minor one by the characteristic methylene proton signals in the NMR spectra. Namely,

^{(8) (}a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. (b) The enantiomeric excess was determined by ¹H NMR on the corresponding epoxy acetate in the presence of Eu(hfbc)₃ by conversion to MTPA ester. Dale, J. P.; Dull, P. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543. (c) Pffenninger, A. Synthesis 1986, 2, 89.

the NMR spectrum of the diol (major product) had a large chemical shift difference between the geminal methylene proton signals while that of the other diol (minor product) was small. Because of the relatively poor biological activity of the threo diol (minor product) compared to the erythro diol (major product), the isolation of threo diol was not made except for 89, 101, 104, 107, and 109 (Table III). To obtain the other potential antifungal compounds, these erythro diols II were cyclized to five-membered cyclic compounds III by various methods (Scheme IV).

24

The target diols IV were prepared by methods F, G, and H (Scheme V). Compounds IV were obtained from I using excess Grignard reagent R_3MgX (method F). The α -hy-

droxy ketones X were hydroxymethylated with paraformaldehyde/KHCO₃ in DMF to give the diols XIV. The diol groups of XIV were protected by 2,2-dimethoxypropane to obtain the dimethyl ketals XV, which were subjected to Grignard reaction with R_3MgX to obtain the alcohols XVI. Compounds XVI were deprotected with dilute HCl, giving the triols XVII, which were treated with *p*-TsCl/ Et₃N to obtain the epoxy alcohols XVIII. Compounds XVIII were treated with sodium imidazole or 1,2,4-triazole in DMF to obtain the target diols IV (method G). Trimethylsilyl enol ether XX was derived from ketone XIX by KH/TMSCl treatment and then was oxidized to ketone XXI with *m*-chloroperbenzoic acid. Compound XXI⁹ was

Scheme IV

Scheme V

treated with 1-[(trimethylsilyl)methyl]-1,2,4-triazole¹⁰/t-BuOK and then hydrolyzed with HCl to obtain the target diol IV (method H).

The configuration of the two diastereomeric diols IV (threo, erythro) was deduced from comparison of the NMR spectra, as accomplished for II.

Biological Results and Discussion

The in vitro and in vivo antifungal activities of imidazolyl- and triazolylpropanolones I and related compounds II-IV are summarized in Table VI. All the compounds were evaluated in vitro on the basis of their MIC values against three species of fungi and MEC values for inhibition of pseudomycelium formation of Candida albicans, and they were examined in vivo on the basis of the ther-

⁽⁹⁾ Rubottom, G. M.; Vazquez, M. A.; Pelegrina, D. R. Tetrahedron Lett. 1974, 4319.

⁽a) Shimizu, S.; Ogata, M. Heterocycles 1986, 24, 237. (b) Shimizu, S.; Ogata, M. J. Org. Chem. 1986, 51, 3897. (10)

Table I

I	(1	-	6	5)	
---	---	---	---	---	---	---	--

no.	R ₁	R_2	X	method	recrystn solvent	mp, °C	yield,ª %	formula	anal.
1	Ph	Ph	N	В	MeOH/AcOEt	175-177	13	$C_{12}H_{15}N_2O_2$	CHN
2	$2,4$ - Cl_2Ph	$2,4$ - Cl_2Ph	Ν	Α	$AcOEt/(i-Pr)_2O$	167-168	24	$C_{17}H_{11}Cl_4N_3O_2$	C, H, Cl. N
3	4-ClPh	4-ClPh	Ν	В	$AcOEt/(i-Pr)_{2}O$	102-104	13	$C_{17}H_{13}Cl_2N_3O_2$, Me ₂ NCHO	C. H. Cl N
4	4-MeOPh	4-MeOPh	Ν	В	$AcOEt/(i-Pr)_2O$	134-135	11	$C_{19}H_{19}N_{3}O_{4}$	C. H. N
5	4-MePh	4-MePh	Ν	В	$AcOEt/(i-Pr)_2O$	123 - 124	5	$C_{19}H_{19}N_{3}O_{2}$	C, H, Cl, N
6	4-FPh	$2,4-Cl_2Ph$	Ν	В	MeOH/AcOEt	200-201	21	$C_{17}H_{12}Cl_2FN_3O_2$	C. H. Cl. F. N
7	2-ClPh	2-ClPh	Ν	В	$(i-Pr)_2O$	172.5 - 174	18	$C_{17}H_{13}Cl_{2}N_{3}O_{2}$	C, H, CI, N
8	3-ClPh	3-ClPh	Ν	В	$AcOEt/(i-Pr)_2O$	117-118	4	$C_{17}H_{13}Cl_{2}N_{3}O_{2}$	C, H, Cl, N
9	4-FPh	4-FPh	Ν	B .	$AcOEt/(i-Pr)_2O$	143 - 144	19	$C_{17}H_{13}FN_{3}O_{2}$	C, H, F, N
10	2-MeOPh	2-MeOPh	Ν	В	$AcOEt/Et_2O$	149-150	6	$C_{19}H_{19}N_3O_4$	C, H, N
11	$2,4$ - Cl_2Ph	4-ClPh	Ν	D	$AcOEt/(i-Pr)_2O$	92 - 95	18	$C_{17}H_{12}Cl_3N_3O_2$	C, H, Cl, N
12	isopropyl	$2,4$ - Cl_2Ph	Ν	Α	$AcOEt/(i-Pr)_2O$	163.5 - 165	46	$C_{14}H_{15}Cl_2N_3O_2$	C, H, Cl, N
13	isopropyl	4-ClPh	Ν	Α	$(i-\Pr)_2O$	80-81	5	$C_{14}H_{16}CIN_3O_2$	C, H, Cl, N
14	2-MePh	2-MePh	Ν	В	$(i-\Pr)_2O$	101 - 102	11	$C_{19}H_{19}N_3O_2$	C, H, N
15	2-ClPh	Ph	Ν	В	$AcOEt/(i-Pr)_2O$	95-96	18	$C_{17}H_{14}ClN_3O_2$	C, H, Cl, N
16	2-ClPh	4-ClPh	Ν	В	$AcOEt/(i-Pr)_2O$	156 - 157	41	$C_{17}H_{13}Cl_2N_3O_2$	C, H, Cl, N
17	2-ClPh	4-FPh	Ν	B	$AcOEt/(i-Pr)_2O$	123 - 125	9	$C_{17}H_{13}ClFN_3O_2$	C, H, Cl, F, N
18	4-ClPh	2-ClPh	N	В	MeOH/AcOEt	179-180	5	$C_{19}H_{13}N_{3}O_{2}^{-1}/_{2}AcOEt$	C, H, Cl, N
19	4-FPh	2-ClPh	N	A	AcOEt	175-177	24	$C_{17}H_{13}ClFN_3O_2$	C, H, Cl, F, N
20	Ph	2-ClPh	N	B	$AcOEt/(i-Pr)_2O$	172 - 173	14	$C_{17}H_{14}ClN_3O_2$	C, H, Cl, N
21	4-MePh	2-CIPh	N	в	$AcOEt/(i-Pr)_2O$	141-143	18	$C_{18}H_{16}ClN_3O_2 \cdot 1/_2AcOEt$	C, H, Cl, N
22	2-CIPh	2,4-Cl ₂ Ph	N	A	AcOEt	162-163	8	$C_{17}H_{12}Cl_3N_3O_2$	C, H, Cl, N
23	$2,4-Cl_2Ph$	2-CIPh	N	A	AcOEt	153-154	39	$C_{17}H_{12}Cl_3N_3O_2$, $^{\circ}/_5AcOEt$	C, H, Cl, N
24	4-CIPh	2,4-Cl ₂ Ph	N	A	AcOEt	198-199	11	$C_{17}H_{12}Cl_2N_3O_2$ / ₁₀ AcOEt	C, H, Cl, N
25	<i>n</i> -butyl	2,4-Cl ₂ Ph	N	A	CH_2Cl_2/Et_2O	113-114	23	$C_{15}H_{17}Cl_2N_3O_2$	C, H, Cl, N
20		$2,4-Cl_2Ph$	IN	A	MeUH	192~193	25	$C_{17}H_{13}Cl_2N_3O_2$	C, H, CI, N
41	2-FFN	$2,4-Cl_2Pn$	IN NI	A	$AcOEt/(l-Rr)_2O$	96~97	10	$C_{17}H_{22}CI_2FN_3O_2ACUEt^{-1}/_2H_2O$	C, H, Cl, F, N
20	IVIE	$2,4-Cl_2Fh$	IN NI	A	ACUEL MOUL / A OFt	101~103	30	$C_{12}H_{11}C_{12}N_{3}O_{2}$	C, H, Cl, N
29	Et namenul	$2,4-Cl_2 = 11$	1N NT	A A	MeOH/ACOLI	200-208	29	$C_{13}\Pi_{13}CI_2N_3O_2$	C, H, Cl, N
00 91	<i>n</i> -propyr	$2,4-Cl_2 = 11$	IN NI	A	ACOEL $A_{0}OEt / (i D_{n}) O$	140-140	39	C H C N O	C, H, Cl, N
29	isobutyl	2,4-C1 Ph	N	А А	$(i \cdot \mathbf{P}_{r}) \cap$	140.0-100	29	C H C N O	C, H, Cl, N
22	evelopentul	$2,4-Cl_2Ph$	N	Δ	Δ_{c} (<i>i</i> -11) ₂ O	168 5-170 5	10	$C_{15}H_{17}C_{12}H_{3}C_{2}$	C H CL N
34	n-propyl	4-ClPh	Ň	Å	$A_cOEt/(i-P_r)_cO$	112-113	15	$C_{16}H_{17}C_{12}H_{3}C_{2}$	CHCIN
35	n-propyl	2-CIPh	N	A	$AcOEt/(i-Pr)_{2}O$	124-125	19	$C_{14}H_{16}OH(3O_2)$	C H C N
36	isopropyl	4-ClPh	Ň	Ă	MeOH	197 dec	27	$C_{14}H_{16}C_{1N}O_{2}$	C H CL N
37	isobutyl	4-ClPh	Ň	A	MeOH	183~185 dec	6	$C_{14}H_{18}CIN_{9}O_{2}(COOH)_{9}$	C H CL N
38	2.4-Cl ₂ Ph	4-FPh	N	A	$AcOEt/(i-Pr)_{0}O$	93-95	14	$C_{17}H_{19}Cl_9N_9O_9$	C. H. Cl. N
39	isopropyl	4-ClPh	N	Α	$(i-Pr)_{2}O$	8081	8	$C_{14}H_{16}CIN_3O_2$	C, H, Cl, N
40	4-FPh	4-ClPh	Ν	Α	$AcOEt/(i-Pr)_{2}O$	121-122	19	$C_{17}H_{13}ClFN_3O_2$	C, H, Cl, F, N
41	2-furyl	2-furyl	Ν	В	$AcOEt(i-Pr)_2O$	154 - 155	29	$C_{13}H_{11}N_{3}O_{4}$	C, H, N
42	2-pyridyl	2-pyridyl	Ν	В	AcOEt	145.5 - 147	11	$C_{15}H_{13}N_5O_2$	C, H, N
43	2,4-Cl ₂ Ph	benzyl	Ν	A	$AcOEt/(i-Pr)_2O$	110-111	34	$C_{18}H_{15}Cl_2N_3O_2$	C, H, Cl, N
44	4-ClPh	isopropyl	Ν	Α	$AcOEt/(i-Pr)_2O$	96.5 - 97.5	17	$C_{14}H_{16}ClN_3O_2$	C, H, Cl, N
45	4-ClPh	<i>n</i> -propyl	Ν	Α	MeOH/AcOEt	169-170	15	$C_{14}H_{16}ClN_3O_2$ ·(COOH) ₂	C, H, Cl, N
46	$2,4$ - Cl_2Ph	<i>n</i> -butyl	Ν	Α	$AcOEt/(i-Pr)_2O$	117 - 118	38	$C_{15}H_{17}Cl_2N_3O_2 \cdot (COOH)_2$	C, H, Cl, N
47	4-ClPh	n-amyl	Ν	A	AcOEt	169-171 dec	32	$C_{16}H_{20}ClN_3O_2 \cdot (COOH)_2$	C, H, Cl, N
48	$2,4$ - Cl_2Ph	<i>n</i> -propyl	Ν	A	$AcOEt/(i-Pr)_2O$	150–151 dec	27	$C_{14}H_{15}Cl_2N_3O_2 \cdot (COOH)_2$	C, H, Cl, N
49	2,4-Cl ₂ Ph	Et	Ν	A	$AcOEt/(i Pr)_2O$	104 - 106	42	$C_{13}H_{13}Cl_2N_3O_2$	C, H, Cl, N
50	4-ClPh	cyclopentyl	N	A	$AcOEt/(i-Pr)_2O$	126-128 dec	4	$C_{16}H_{18}ClN_3O_2 \cdot 3/2(COOH)_2$	C, H, CI, N
51	2-CIPh	n-butyl	N	A	$MeOH/(\iota-Pr)_2O$	151-153 dec	30	$C_{15}H_{18}CIN_3O_2$ (COOH) ₂	C, H, Cl, N
52	4-CIPh	cyclohexyl	N	A	$AcOEt/(i-Pr)_2O$	150-152 dec	10	$C_{17}H_{20}CIN_{3}O_{2} \cdot J_{2}(COOH)_{2}$	C, H, Cl, N
53	4-CIPh	isobutyl	N	A	AcOEt	115-117 dec	12	$C_{15}H_{18}CIN_3O_2 \cdot (COOH)_2$	C, H, Cl, N
54 55	4-CIPh	<i>n</i> -butyl	N	A D	acetone/n-nexane	102~103	26	C H C1 N O	C, H, Cl, N
99 56	4-CIFR 2-CIPh	4-015 D 2-012h	CUL	B	RUDEI FtOH	220-221	0 10	$C_{18} + 1_4 + C_{12} + N_2 + C_2$	C H C N
50 57	isonronyl	4-CIPh	CH	A	MeOH/AcOEt	184-186	13	$C_{18} + 1_{14} + C_{12} + 2_{2} + 2$	C. H. CL N
58	4-FPh	2 4-Cl-Ph	CH	Ă	MeOH	233-235	20	$C_{10}H_{10}Cl_0FN_0O_0$	C. H. Cl. F. N
59	n-butvl	2.4-Cl ₂ Ph	CH	Ă	MeOH	189-191	11	$C_{1c}H_{18}Cl_2N_2O_2$	C, H, Cl. N
60	2-thienvl	4-ClPh	СĤ	Ā	MeOH/CHCl _a	239 dec	43	$C_{16}H_{13}ClN_2O_2S$	C, H, Cl, N, S
61	2,4-ClPh	4-ClPh	CH	A	MeOH/AcOEt	161 - 162	13	$C_{18}H_{13}Cl_3N_2O_2$	C, H, Cl, N
62	isopropyl	2,4-Cl ₂ Ph	CH	Α	MeOH/AcOEt	246 dec	21	$C_{15}H_{16}Cl_2N_2O_2$	C, H, Cl, N
63	4-ClPh	$2,4$ - Cl_2 Ph	CH	Α	MeOH	255 - 257	12	$C_{18}H_{13}Cl_3N_2O_2$	C, H, Cl, N
64	Ph	$2,4-Cl_2Ph$	CH	Α	MeOH	253 - 254	17	$\mathrm{C_{18}H_{14}Cl_2N_2O_2}$	C, H, Cl, N
65	2,4-Cl ₂ Ph	$2,4-Cl_2Ph$	CH	Α	AcOEt/DMF	164 - 166	22	$C_{18}H_{12}Cl_4N_2O_2\cdot^1/_5AcOEt\cdot^1/_2H_2O$	C, H, Cl, N

^a Method A: overall yield from V to I. Method B: overall yield from IX to I. Method C: overall yield from X to I.

apeutic effect on the subacute systemic murine model of candidiasis. The compounds in general were highly active

against Trichophyton asteroides but slightly active or inactive (up to 100 $\mu {\rm g}/{\rm mL}$) against both C. albicans and

Table II

no.	R ₁	R ₂	method	recrystn solvent	mp, °C	yield,ª %	formula	anal.
66	Ph	Ph	В	AcOEt	261-263	4	C ₁₇ H ₁₅ N ₃ O ₂	<u>C,</u> H, N
67	$2,4-Cl_2Ph$	$2,4-Cl_2Ph$	А	AcOEt	137 dec	4	$C_{17}H_{11}Cl_4N_3O_2 \cdot 1/_2H_2O \cdot 1/_3AcOEt$	C, H, Cl, N
68	4-ClPh	4-ClPh	В	$AcOEt/(i-Pr)_2O$	232 - 233	7	$C_{17}H_{13}Cl_2N_3O_2$	C, H, Cl, N
69	4-MeOPh	4-MeOPh	В	AcOEt	142–144 dec	6	$C_{19}H_{19}N_3O_4 \cdot 1/_2AcOEt$	C, H, N
70	4-FPh	2,4-Cl ₂ Ph	В	MeOH/AcOEt	>260	3	$C_{17}H_{12}Cl_2FN_3O_2$	C, H, Cl, F, N
71	3-ClPh	3-ClPn	В	AcOEt	204 - 205	2	$C_{17}H_{13}Cl_2N_3O_2$	C, H , Cl, N
72	4-FPh	4-FPh	в	MeOH/AcOEt	241 - 242	9	$C_{17}H_{13}F_2N_3O_2$ ·MeOH	C, H, F, N
73	$2,4$ - Cl_2Ph	4-ClPh	С	AcOEt	219 - 221	7	$C_{17}H_{12}Cl_3N_3O_2 \cdot 1/_5AcOEt$	C, H, Cl, N
74	isopropyl	2,4-Cl ₂ Ph	Α	AcOEt	>250	4	$C_{14}H_{15}Cl_2N_3O_2$	C, H, Cl, N
75	4-FPh	2-ClPh	Α	MeOH/AcOEt	258 - 260	4	$C_{17}H_{13}ClFN_3O_2$	C, H, Cl, F, N
76	Et	$2,4$ - Cl_2Ph	Α	MeOH/AcOEt	238-240	4	$C_{13}H_{13}Cl_2N_3O_2$	C, H, Cl, N

^a Method A: overall yield from V to VIII. Method B: overall yield from IX to VIII. Method C: overall yield from X to VIII.

Table III

II (86-114)

							configur-		
no.	R ₁	\mathbf{R}_2	X	recrystn solvent	mp, °C	yield, %	ation ^a	formula	anal.
86	Ph	Ph	Ν	$AcOEt/(i-Pr)_2O$	189-191	10	Е	$C_{17}H_{17}N_3O_2 \cdot 1/_{10}H_2O$	C, H, N
87	$2,4$ - Cl_2Ph	$2,4$ - Cl_2Ph	Ν	$AcOEt/(i-Pr)_2O$	214 - 217	64	E	$C_{17}H_{13}Cl_4N_3O_2 \cdot 1/_5AcOEt$	C, H, Cl, N
88	4-ClPh	4-ClPh	Ν	$AcOEt/(i-Pr)_2O$	168 - 170	87	\mathbf{E}	$C_{17}H_{15}Cl_2N_3O_2$	C, H, Cl, N
89	4-ClPh	4-ClPh	N	$AcOEt/(i-Pr)_2O$	161 - 162	1	Т	$C_{17}H_{15}Cl_2N_3O_2$	C, H, Cl, N
90	4-MeOPh	4-MeOPh	Ν	$AcOEt/(i-Pr)_2O$	82.5 - 83.5	40	\mathbf{E}	$C_{19}H_{21}N_{3}O_{4}\cdot^{1}/_{2}AcOEt$	C, H, N
91	4-MePh	4-MePh	Ν	$AcOEt/(i-Pr)_2O$	166	44	E	$C_{19}H_{21}N_3O_2$	C, H, N
92	4-FPh	$2,4$ - Cl_2Ph	Ν	$AcOEt/(i-Pr)_2O$	180-181	70	\mathbf{E}	$C_{17}H_{14}Cl_2FN_3O_2$	C, H, Cl, F, N
93	2-ClPh	2-ClPh	Ν	MeOH	207.5 - 209.5	48	E	$C_{17}H_{15}Cl_2N_3O_2$	C, H, Cl, N
94	3-ClPh	3-ClPh	Ν	$(i-Pr)_2O$	64-66	23	\mathbf{E}	$C_{17}H_{15}Cl_2N_3O_2 \cdot 1/_2AcOEt \cdot 1/_2H_2O$	C, H, Cl, N
95	4-FPh	4-FPh	Ν	$AcOEt/(i-Pr)_2O$	170 - 172	75	E	$C_{17}H_{15}F_2N_3O_2$	C, H, F, N
96	2-MeOPh	2-MeOPh	Ν	$(Et)_2O$	197-199	15	\mathbf{E}	$C_{19}H_{21}N_{3}O_{4}\cdot^{1}/_{2}AcOEt\cdot^{1}/_{10}H_{2}O$	C, H, N
97	2-ClPh	Ph	Ν	AcOEt	247 - 250	48	\mathbf{E}	$C_{17}H_{15}Cl_2N_3O_2$	C, H, Cl, N
98	2-ClPh	4-FPh	Ν	MeOH/AcOEt	222-225	33	\mathbf{E}	$C_{17}H_{15}ClFN_3O_2$	C, H, Cl, F, N
99	<i>n</i> -propyl	$2,4$ - Cl_2Ph	Ν	AcOEt	170 - 172	20	\mathbf{E}	$C_{14}H_{17}Cl_2N_3O_2$	C, H, Cl, N
100	isopropyl	4-ClPh	Ν	$AcOEt/(i-Pr)_2O$	110 - 111	28	\mathbf{E}	$C_{14}H_{18}ClN_3O_2$	C, H, Cl, N
101	isopropyl	4-ClPh	Ν	$AcOEt/(i-Pr)_2O$	149 - 151	18	Т	$C_{14}H_{18}ClN_3O_2$	C, H, Cl, N
102	$2,4$ - Cl_2Ph	4-FPh	Ν	$AcOEt/(i-Pr)_2O$	166 - 167.5	80	\mathbf{E}	$C_{17}H_{14}Cl_2FN_3O_2$	C, H, Cl, N
103	4-FPh	4-ClPh	Ν	AcOEt	164 - 166	64	\mathbf{E}	$C_{17}H_{15}ClFN_3O_2$	C, H, Cl, F, N
104	4-FPh	4-ClPh	Ν	$AcOEt/(i-Pr)_2O$	162 - 164	6	Т	$C_{17}H_{15}ClFN_3O_2$	C, H, Cl, F, N
105	4-FPh	$2,4$ - Cl_2Ph	Ν	MeOH/AcOEt	228 - 230	4	\mathbf{E}	$C_{17}H_{14}Cl_2FN_3O_2$	C, H, Cl, F, N
106	n-propyl	4-ClPh	Ν	$AcOEt/(i-Pr)_2O$	96-97	70	\mathbf{E}	$C_{14}H_{18}ClN_3O_2$	C, H, Cl, N
107	n-propyl	4-ClPh	Ν	$AcOEt/(i-Pr)_2O$	146 - 147	13	Т	$C_{14}H_{18}ClN_8O_2$	C, H, Cl, N
108	4-ClPh	$2,4$ - Cl_2Ph	Ν	MeOH/CH ₃ CN	184 - 186	60	E	$C_{17}H_{14}Cl_3N_3O_2$	C, H, Cl, N
109	4-ClPh	$2,4$ - Cl_2Ph	Ν	MeOH	228 - 230	3	Т	$C_{17}H_{14}Cl_3N_3O_2$	C, H, Cl, N
110	$2,4$ - Cl_2Ph	4-ClPh	Ν	MeOH/AcOEt	221 - 223	33	\mathbf{E}	$C_{17}H_{14}Cl_3N_3O_2$	C, H, Cl, N
111	isopropyl	$2,4$ - Cl_2Ph	Ν	$AcOEt/(i-Pr)_2O$	139.4-141	28	\mathbf{E}	$C_{14}H_{17}Cl_2N_2O_2$	C, H, Cl, N
112	4-ClPh	4-ClPh	CH	AcOEt	114 - 117	28	\mathbf{E}	$C_{18}H_{16}Cl_2N_2O_2$ ·1/2AcOEt	C, H, Cl, N
113	2-ClPh	2-ClPh	CH	MeOH	250 - 251	35	Е	$C_{18}H_{16}Cl_2N_2O_2$	C, H, Cl, N
114	2,4-Cl ₂ Ph	2.4-Cl ₂ Ph	CH	AcOEt/Et ₂ O	220 - 230	37	E	C10H14CLN2O2	C. H. Cl. N

^a E: erythro form (86-114). T: three form (89, 100, 103, 109).

Aspergillus fumigatus. A considerable number of the compounds exhibited a high inhibitory effect on pseudo-mycelium formation of the yeast.

Compounds 2, 11–13, 19, 22–24, 27, 31, 36, 38, 39, 83, 92, 117, 120, 131, 140, 153, 162, and 197 showed good oral efficacy against the murine model of candidiasis. They also displayed a high inhibitory effect on the pseudomycelium formation (MECs ranging from 0.02 to $2.5 \,\mu g/mL$), in spite of their poor fungistatic activity (MICs ranging from 50 to >100 $\mu g/mL$).

Compounds 2, 12, 38, and 92 were selected as the most interesting candidates for orally active antifungal agents.

The results of comparative in vitro and in vivo studies of ketoconazole and our selected compounds are given in Table VII. Ketoconazole and compounds **39** and **92** displayed essentially similar in vitro activities with compounds **2**, **12**, and **38** showing lower activity against *A*. *fumigatus*. Compound **39** was about twice as effective as ketoconazole against the model of candidiasis. Meanwhile, compound **2** was much more effective than ketoconazole against guinea pig dermatophytosis. Others were similar (compounds **12** and **92**) to ketoconazole or more toxic (compounds **38** and **39**).

The lower fungistatic activity of our selected compounds

Table IV

no.ª	R ₁	R ₂	X	Y	recrystn solvent	mp, °C yield, % formula		formula	anal.
115	4-ClPh	$2,4-Cl_2Ph$	N	CO	$AcOEt/(i-Pr)_{2}O$	178-179	86	C ₁₂ H ₁₂ Cl ₂ N ₂ O ₃	C. H. Cl. N
116 ^b	4-ClPh	2,4-Cl ₂ Ph	Ν	со	, · · · •	foam	47	C ₁ ,H ₁ ,Cl ₂ N ₂ O ₂	C. H. Cl. N
117	4-FPh	2,4-Cl ₂ Ph	Ν	CO	$AcOEt/(i-Pr)_{0}O$	191-192	79	$C_{10}H_{10}C_{10}FN_{0}O_{0}$	C. H. Cl. F. N
118	Ph	2.4-Cl ₂ Ph	Ν	СО	$AcOEt/(i-Pr)_{2}O$	138 - 139	34	$C_{10}H_{10}C_{10}N_0O_0$	C. H. CL N
119	Ph	2-ClPh	Ν	СО	AcOEt/MeOH	220 - 222	20	$C_{10}H_{14}CIN_0O_0$	C. H. Cl. N
120	2.4-Cl ₂ Ph	4-ClPh	Ν	CO	AcOEt	162 - 163	78	$C_{10}H_{10}C_{10}N_{0}O_{0}$	C. H. CL N
121	2.4-Cl _o Ph	2.4-Cl ₂ Ph	N	CO	MeOH	222-223	64	$C_{10}H_{11}CLN_0O_0$	C H CL N
122	2-ClPh	2-ClPh	N	ČŌ	MeOH	234 - 235	93	$C_{10}H_{10}C_{10}N_{0}O_{0}$	C H CL N
123	4-FPh	4-FPh	N	ĊŌ	AcOEt/MeOH	81-82	68	$C_{13}H_{13}G_{2}H_{3}G_{3}$	CHEN
124	4-ClPh	4-CIPh	Ň	čõ	$AcOEt/(i-Pr)_{oO}$	155-156	70	$C_{10}H_{10}C_{10}N_{2}O_{10}$	C H CL N
125	3-CIPh	3-ClPh	N	čõ	$AcOEt/(i-Pr)_{2}O$	148 5-149 5	58	$C_{13}H_{13}O_{2}H_{3}O_{3}$	C H C N
126	4-MePh	4-MePh	N	čõ	$AcOEt/(i-Pr)_{2}O$	139-140	80	C.H.N.O.	CHN
127	4-MePh	2-CIPh	N	čõ	AcOEt	195-196	26	$C_{20}H_{19}C_{3}O_{3}$	C H CL N
128	24-ClaPh	Ph	N	čõ	$AcOEt/(i-Pr)_{o}O$	145-146	64	$C_{19}H_{16}OH_{3}O_{3}$	C H Cl N
120	4-CIPh	24-CLPh	N	čõ	$AcOEt/(i-Pr)_{2}O$	178-179	86	$C_{18}H_{13}C_{2}H_{3}C_{3}$	C, H, Cl, N
130	4-CIPh	2,4-Cl.Ph	N	00	$M_{eOH} (1-11)_{2O}$	238-230	51	$C_{18}H_{12}C_{13}H_{3}C_{3}$	C, H, Cl, N
131	isopropul	$2,4-Cl_{2}Ph$	Ň	CO	$\Delta cOEt / (i - Pr) = O$	150~150 5	52	C H C N O	C H C N
132	n-propyl	$2,4-Cl_2Ph$	N	CO CO	$AcOEt/(i-1)_2O$ $AcOEt/(i-Pr)_2O$	179-180	71	$C_{15}H_{15}C_{12}H_{3}O_{3}$	C H C N
133	n-propyl	4-CIPh	N	CO	$AcOEt/(i-Pr)_{2}O$	191-199	69	C H C N O	C H C N
134	iconropy!	4 CIPh	N	00	$AcOEt/(i-1)_2O$	104-105	52	C H C N O	C H C N
1950	icopropyl	4 CIPh	N	čo	$A_{2}OEt/(l-1)_{2}O$	200-201	82	C H C N O	C H C N
136	n butul	24.CLPh	M	C0 C0	$(i \cdot \mathbf{P}_r) \cap$	197-198	49	C = C = C = N O	C, Π, CI, N
197	A FDL	2,4-0121 II	N	80	$\Lambda_2 \cap \mathbf{F} + \langle (\mathbf{i} \cdot \mathbf{P} \mathbf{r}) \cdot \mathbf{O} \rangle$	170-171	42	C U C E N O S	
199	4-111 1 FDL	2,4-0321 II	N	50	$M_0 O \mathbf{H}$	170-171	30	$C_{17}H_{12}C_{12}FN_{3}C_{3}S$	C H C F N S
120	94 CI Dh	2,4-0121 II	N	50	$\Lambda_{0} OEt / (i Dr) O$	1625 1645	10	$C_{17}H_{12}C_{12}FN_{3}O_{3}S$	C H C H R N S
133	$2,4-Cl_2Fll$	4-CIPh	IN NT	50	$AcOEt/(t-FT)_2O$	103.0-104.0	19	$C_{17} H_{12} C_{13} N_3 C_{3} S_{3} S_{$	C H C N S
140	2,4-012F II	94 CI Dh	IN N	50	$A_{2}OE_{1}$	170.190	20	C = C = C = C = C	C H C N S
141	T II Dh	$2,4-Cl_2Fl_2$	N	50	AcOEt	179-100	16	$C_{17} H_{13} C_{12} N_3 C_{35}$	
142		$2,4-Cl_2r$ II	1N N	50	AcOEt	201-200	10	C = C = C = N = C	C H C N S
140	4-CIPh	$2,4-01_2$ F II	IN NI	50	$A_{2}OE_{1}/(l-F_{1})_{2}O$	10/-100	40	$C_{17}H_{12}C_{13}H_{3}O_{3}S$	C H C N S
144	4-CH H	2,4-0121 II	N	50	AcOEt	157_159	22	C = C = C = C = C = C = C = C = C = C =	C H C N
140	isopropyl	4 CIPh	N	50	$A_{2}OEt/(i-1)_{2}O$	190-191	20	C H CINOS	C H C N S
140	2 A CI DL	4-CIPh	N	CH	$A_{2}OE_{1}(1-11)_{2}O$	201-202	20 54	$C \mathbf{H} C \mathbf{N} O$	C H C N
147	2,4-0121 II	24.CLDh	N		$A_{0}OEt/(i, P_{r}) O$	152-155	67	C H C F N O	C H C N
140	4-1-1-11 Dh	2,4-0121 II	N		$AcOEt/(i-11)_2O$	197-198	40	C H C N O	C H C N
140	24 CL Dh	2,4-0121 H	N	CH^2	$AcOEt/(i-T)_2O$	146-147	40 92	C H C N O	C H C N
151	2,4-012F II	1 CIDh	N		AcOEt/(i Pr) O	120-121	63	C H CIEN O	CHCIEN
151	4-FFI	2 / CI Dh	N		$A_{2}OEt/(i-T_{1})_{2}O$	144-145	52	C H C N O	C H C N
154	4-CIFII	2,4-012F II	IN IN		$AcOEt/(t-FT)_2O$	144-140	52	$C_{19} H_{15} C_{13} N_2 O_2$	C H C N
100	isopropyl	4-CIPh	IN NI		Et O	90-92	74 97	C \mathbf{U} C \mathbf{N} O	C, H, O, N
154	a A Cl Dh	4-CIPh	IN NI	C(CH)	$(D_{\rm r})$	139-140	27	C H C N O	C, H, Cl, N
100	$2,4-01_2Pn$	4-CIPh	IN N	$C(\mathbf{M}_2)_5$	$(l-\Gamma\Gamma)_2 O$	141-142	20	$C_{20}\Pi_{18}C_{13}\Pi_{3}O_{2}$	
100	2,4-01 ₂ Pn	4-UIPN	IN N	$C(wie)_2$	ACUEL $A_{2}OE \neq /(i D_{2}) O$	160 170	00 65	$C_{23} \Pi_{22} C_{13} \Pi_{3} U_{2} (C U C \Pi)_{2}$	CHCIENC
157	4-FPn	$2,4-01_2Pn$	IN	00	$ACUET/(l-PT)_2U$	109-170	00 77	$C_{18} \Pi_{12} C_{12} \Gamma N_3 C_2 S$	C U CI F N
150	4-FPn	$2,4-Cl_2Ph$		00		209-212	11 00	$C_{19} \Pi_{13} C_{12} \Gamma_{1N_2} U_3$	C, Π, CI, Γ, N
128	Pn	$2,4-\text{Cl}_2\text{Ph}$	CH	00	ACUET	230-232	82	$\cup_{19} \mathbf{n}_{14} \cup \mathbf{l}_2 \mathbf{N}_2 \cup_3$	U, П, U, IN

^aR₁, R₂: trans configuration unless otherwise noted. ^bR₁, R₂: cis configuration (116, 135).

against C. albicans in vitro corresponded poorly with their good therapeutic effect in vivo. Conversely, the in vitro morphological test results (inhibitory effect on the pseudomycelium formation) correlated comparatively well to the in vivo oral efficacy. Polka et al.¹¹ also reported that the correlation between in vitro and in vivo responses of C. albicans isolates was very poor for orally administered ketoconazole.

Our selected compounds were comparable to ketoconazole, which inhibits pseudomycelium formation of C. albicans at low concentrations.¹²⁻¹⁸ These findings on in

- (11) Polka, A.; Odds, F. C.; Ludin, E.; Scholer, H. J. Chemotherapy (Basel) 1985, 31, 395.
- (12) Borgers, M.; De Brabander, M.; Van den Bossche, H.; Van Cutsem, J. Postgrad. Med. J. 1979, 55, 687.
- Borgers, M.; De Brabander, M.; Van den Bossche, H. Proc. R. (13)Soc. Med (Int. Congr. Symp., Ser. 7) 1979, 21.
- (14) Borgers, M. Rev. Infect. Dis. 1980, 2, 520.

vitro and in vivo antifungal activities of triazolylpropiophenones against C. albicans led us to agree with Borgers,14 who noted that in vitro results obtained with C. albicans cultured on EMEM correspond more closely to the in vivo potency of the imidazole antimycotics than to results obtained in other culture media.

Structure-Activity Relationships

The substituents on phenyl groups $(R_1 \text{ and } R_2)$ in I such as chlorine and fluorine atoms (2, 11, 19, 22-24, 27, 28) led

- (15) Van den Bossche, H.; Willemsens, G.; Cools, W.; Cornelissen, F.; Lauwers, W. F.; Van Cutsem, J. Antimicrob. Agents Chemother. 1980, 17, 922.
- (16) Shigematsu, M. L.; Uno, J.; Arai, T. Shinkin to Shinkinsho 1981, 22, 195.
- Johnson, E. M.; Barnard, M. L.; Richardson, M. D.; Warnock, (17)D. W. Mykosen 1982, 25, 481. (18) Minagawa, H.; Kitaura, K.; Mineura, K.; Marumo, H. Shinkin
- to Shinkinsho 1983, 24, 234.

Table V

	voorwotn viold 9										
no.	\mathbf{R}_1	\mathbf{R}_2	R ₃	x	method	solvent	mp, °C	%	$config^b$	formula	anal.
160	4-FPh	4-FPh	Me	Ν	F	Et ₂ O/n-	163-164	27	\mathbf{E}	$C_{18}H_{17}F_2N_3O_2$	C, H, F, N
160	4-FPh	4-FPh	Me	N	G	Et_2O/n - hexane	163–164	24	Е	$C_{18}H_{17}F_2N_3O_2\\$	C, H, F, N
161	4-FPh	4-FPh	Me	N	F	Et ₂ O/n- hexane	170–171	12	Т	$C_{18}H_{17}F_2N_3O_2$. (COOH) ₂ .	C, H, F, N
161	4-FPh	4-FPh	Me	N	G	Et ₂ O/ <i>n</i> - hexane	170-171	50	Т	$C_{18}H_{17}F_2N_3O_2$. (COOH) ₂	C, H, F, N
162	4-FPh	4-ClPh	Me	Ν	F	$AcOEt/(i-Pr)_2O$	155 - 156	22	\mathbf{E}	$C_{18}H_{17}ClFN_3O_2$	C, H, Cl, F, N
163	4-FPh	4-ClPh	Me	Ν	\mathbf{F}	$AcOEt/(i-Pr)_2O$	154-155	22	т	$C_{18}H_{17}ClFN_3O_2$	C, H, Cl, F, N
164	4-FPh	4-FPh	\mathbf{Ph}	Ν	\mathbf{F}	$AcOEt/(i-Pr)_2O$	189-191	29	E	$C_{23}H_{19}F_2N_3O_2$	C, H, F, N
165	4-FPh	4-FPh	Ph	N	F	MeOH/(<i>i</i> -Pr) ₂ O	100-102	12	Т	$C_{23}H_{19}F_2N_3O_2$ (COOH) ₂ · (<i>i</i> -Pr) ₂ O	C, H, F, N
166	Ph	$2,4-Cl_2Ph$	Me	Ν	F	$AcOEt/(i-Pr)_2O$	125 - 126	44	Е	$C_{18}H_{17}Cl_2N_3O_2$	C, H, Cl, N
167	Ph	$2,4$ - Cl_2 Ph	Me	Ν	F	$AcOEt/(i-Pr)_2O$	91–92	12	т	$C_{18}H_{17}Cl_2N_3O_2$. $^{1}/_{5}(i-Pr)_2O$	C, H, Cl, N
168	isopropyl	$2,4-Cl_2Ph$	Me	Ν	F	$(i-Pr)_2O$	127 - 128	16	Ē	$C_{15}H_{19}Cl_2N_3O_2$	C, H, Cl, N
169	isopropyl	$2,4-Cl_2Ph$	Me	Ν	\mathbf{F}	AcOEt	148-149	21	т	$C_{15}H_{19}Cl_2N_3O_2$	C, H, Cl, N
170	4-FPh	4-ClPh	Et	Ν	\mathbf{F}	$AcOEt/(i-Pr)_2O$	169-171	36	\mathbf{E}	$C_{19}H_{19}ClFN_3O_2$	C, H, Cl, F, N
171	4-FPh	4-ClPh	\mathbf{Et}	Ν	\mathbf{F}	$AcOEt/(i-Pr)_2O$	154 - 155	8	т	$C_{19}H_{19}ClFN_3O_2$	C, H, Cl, F, N
172	4-ClPh	isopropyl	Me	Ν	F	AcOEt	137-138	22	\mathbf{E}	$C_{15}H_{20}ClN_3O_2$	C, H, Cl, N
173	4-FPh	$2,4-Cl_2Ph$	Me	Ν	F	$AcOEt/(i-Pr)_2O$	156 - 157	50	\mathbf{E}	$\mathrm{C}_{18}\mathrm{H}_{16}\mathrm{Cl}_{2}\mathrm{FN}_{3}\mathrm{O}_{2}$	C, H, Cl, F, N
174	4-FPh	$2,4-Cl_2Ph$	Me	Ν	F	$AcOEt/(i-Pr)_2O$	137-139	15	Т	$C_{18}H_{16}Cl_2FN_3O_2$	C, H, Cl, F, N
175	4-ClPh	2,4-Cl ₂ Ph	Me	N	F	(<i>i</i> -Pr) ₂ O/ petroleum ether	158-159	68	E	$C_{18}H_{16}Cl_3N_3O_2$	C, H, Cl, N
176	4-ClPh	2,4-Cl ₂ Ph	Me	N	F	(<i>i</i> -Pr) ₂ O/ petroleum ether	142-144	16	Т	$C_{18}H_{16}Cl_3N_3O_2$	C, H, Cl, N
177	isopropyl	Ph	Me	Ν	F	$AcOEt/(i-Pr)_0O$	138.5-139.5	11	Е	C10H17N2O2	C. H. N
178	4-FPh	2.4-Cl ₂ Ph	2-thienvl	N	F	$AcOEt/(i-Pr)_{2}O$	185-186	53	Ē	$C_{21}H_{12}Cl_2FN_2O_2S$	C. H. Cl. F. N. S
179	$2,4$ - Cl_2 Ph	4-ClPh	Me	N	F	$AcOEt/(i-Pr)_2O$	92-93	20	Ē	$C_{18}H_{16}Cl_3N_3O_2$. $1/2(i-Pr)_2O$	C, H, Cl, N
180	4-ClPh	4-FPh	Me	Ν	F	$AcOEt/(i-Pr)_2O$	211.5 - 213.5	59	\mathbf{E}	C ₁₉ H ₁₈ ClFN ₂ O ₂	C, H, Cl, F, N
181	4-FPh	2-ClPh	Me	Ν	F	(<i>i</i> -Pr) ₂ O/ petroleum ether	91-92	33	Е	C ₁₈ H ₁₇ ClFN ₃ O ₂ · ¹ / ₁₀ (<i>i</i> -Pr) ₂ O	C, H, Cl, F, N
182	4-FPh	2-ClPh	Me	Ν	F	$(i-Pr)_2O$	127 - 128	8	Т	C ₁₈ H ₁₇ ClFN ₃ O ₂	C, H, Cl, F, N
183	4-FPh	2-ClPh	Me	CH	\mathbf{F}	$AcOEt/(i-Pr)_2O$	144-145	38	\mathbf{E}	$C_{19}H_{18}ClFN_2O_2$	C, H, Cl, F, N
184	4-FPh	4-ClPh	Me	CH	F	$AcOEt/(i-Pr)_2O$	177-178	33	\mathbf{E}	$C_{19}H_{18}ClFN_2O_2$	C, H, Cl, F, N
185	4-ClPh	4-FPh	Me	CH	F	<i>i</i> -PrOH	225 - 227	14	т	$C_{19}H_{18}ClFN_2O_2$	C, H, Cl, F, N
186	4-ClPh	isopropyl	4-ClPh	Ν	F	$AcOEt/(i-Pr)_2O$	166168	89	Е	$C_{20}H_{21}ClN_{3}O_{2}$. $^{1}/_{2}H_{2}O$	C, H, Cl, N
187	Ph	$2,4$ - Cl_2Ph	n-Bu	Ν	F	MeOH/AcOEt	176-177	31	\mathbf{E}	$C_{21}H_{23}Cl_2N_3O_2$	C, H, Cl, N
188	4-FPh	2-ClPh	n-Bu	Ν	F	AcOEt/ petroleum ether	134136	21	Е	$\mathrm{C}_{21}\mathrm{H}_{23}\mathrm{ClFN}_3\mathrm{O}_2$	C, H, Cl, F, N
189	4-FPh	2-ClPh	n-Bu	Ν	F	(<i>i</i> -Pr) ₂ O/ petroleum	108-109	6	т	$\mathrm{C}_{21}\mathrm{H}_{23}\mathrm{ClFN}_3\mathrm{O}_2$	C, H, Cl, F, N
190	4-ClPh	n-butyl	Me	N	F	$AcOEt/(i-Pr)_0$	151-153	49	E	C.H.CIN-O.	CHCIN
191	4-ClPh	n-butvl	Me	N	F	AcOEt	142-144	49	$\tilde{\bar{\mathbf{T}}}$	C10H022011302	C. H. Cl. N
192	4-ClPh	4-ClPh	Me	CH	F	MeOH/Et ₂ O	156-158	68	Ē	$C_{10}H_{10}Cl_0N_0O_0$	C. H. Cl. N
193	4-ClPh	4-ClPh	Me	N	F	MeOH/Et ₂ O	137-139	46	Ē	$C_{20}H_{10}Cl_0N_0O_0$	C. H. Cl. N
194	4-ClPh	4-ClPh	Me	Ν	\mathbf{F}	MeOH/Et ₂ O	160162	29	т	$C_{20}H_{19}Cl_2N_3O_6$	C, H, Cl, N
195	4-FPh	4-ClPh	$4\text{-}ClPhCH_2$	Ν	F	$AcOEt/(i-\tilde{P}r)_2O$	161-162	37	Ε	$C_{24}H_{20}Cl_2FN_3O_2$	C, H, Cl, F, N
196	Ph	2,4-Cl₀Ph	4-ClPhCH.	Ν	F	MeOH	211-213	29	Е	¹ / ₂ AcOEt	C. H. Cl. N
197	4-FPh	4-ClPh	n-propyl	N	F	AcOEt/(i-Pr) ₂ O	160-161	19	Ē	$C_{20}H_{21}ClFN_{2}O_{2}$	C, H, Cl, F. N
198	Me	Ph	Me	N	Н	$AcOEt/(i-Pr)_2O$	138.5-139.5	11		$C_{13}H_{17}N_3O_2$	C, H, N

^a Yield based on the last step. ^b E: erythro. T: threo.

to in vitro and in vivo activity. Replacement of the halogen by hydrogen, methyl, and methoxy groups produces negative effects (1, 4, 5, 10, 14, 15, 20, 21, 26). Replacement of the phenyl group in R_2 of I by an alkyl group (43-53) causes loss of in vitro and in vivo activity, with the retaining of some activity in R_1 . The size of the alkyl group in R_1 plays an important role in the high activity in vivo. Namely, methyl, ethyl, *n*-propyl, isobutyl, and cyclopentyl

Table VI. In Vitro and in Vivo Antifungal Activities of Triazole Derivatives

		in	vitro		in vivo, no. of survivors/to-		<u></u>	in	vitro		in vivo, no. of	
]	MIC, $\mu g/m$	1L	MEC,	tal infected			MIC, $\mu g/m$	L	MEC,	tal infected	
no.	<i>C.a.</i> °	A.f.°	$T.a.^{c}$	$\mu g/mL^a$	(%) ^b	no.	C.a. ^c	A.f. ^c	$T.a.^{c}$	$\mu g/mL^{a}$	(%) ^b	
1	>100	>100	12.5	>20	0/8 (0)	83	>100	>100	0.1	0.08	8/8 (100)	
2	50 50	>100	0.1	0.16	7/8 (87.5)	84	50	>100	0.1	1.25	•1/8 (12.5)	
3 4	>100	>100	0.39	20 ≥20		80	>100	>100	25	>20	619 (75)	
5	>100	>100	1.56	20		88	100 50	>100	0.39	1.25	6/6 (13)	
6	>100	>100	0.1	1.25	2/8 (25)	89	50	>100	12.5	20		
7	50	50	0.1	0.08	2/8 (25)	90	>100	>100	25	>20		
8	>100	>100	3.13	>20		91	>100	>100	1.6	2.5		
9	100	>100	0.79	10		92	50	25	0.1	0.08	8/8 (100)	
10	>100 100	>100	12.5	>20 0.31	8/8 (100)	93	100 \\100	6.3 N100	0.1	0.08	2/8 (25)	
12	100	100	0.1	0.04	8/8 (100)	94 95	>100	>100	16	10		
13	>100	12.5	0.1	0.08	7/8 (87.5)	96	>100	>100	3.1	10		
14	>100	>100	3.1	5.0	0/8 (0)	97	>100	>100	0.8	>20		
15	>100	>100	1.6	>20		98	>100	>100	0.8	10	0/8 (100)	
16	>100	>100	0.4	>20	0/8 (0)	99	>100	50	0.1	0.04		
17	>100	>100	0.4	10	0/8(0)	100	>100	>100	0.8	0.16		
19	100	>100	1.6	2.5	8/8 (100)	102	>100	>100	0.3	0.83		
20	>100	>100	1.6	2.5	_, = ()	103	>100	>100	0.8	0.31		
21	>100	>100	0.8	2.5	1/8 (12.5)	104	50	>100	6.3	2.5		
22	>100	>100	0.1	0.04	8/8 (100)	105	>100	>100	25	5		
23	100	100	0.1	0.31	7/8 (87.5)	106	>100	>100	1.6	0.16		
24 25	>100	>100	0.1	1.25	7/8 (87.5)	107	>100	>100	6.3	0.16		
26	>100	>100	0.1	1.25	0/8(0)	109	100	>100	12.5	20		
27	100	>100	0.1	0.04	7/8 (87.5)	110	100	>100	0:1	0.31		
28	>100	50	0.2	0.04	2/8 (25)	111	>100	50	0.1	0.04		
29	100	100	0.1	0.04	2/8 (25)	112	>100	>100	50	>20		
30	50	50	0.1	0.04	$\frac{4}{8}(50)$	113	>100	100	0.4	1.25	4/8(50)	
31	>100	>100	0.1	0.04	7/8 (87.5)	114	50	100	0.1	1.25	3/8 (37.5)	
33	50	>100	0.1	0.02	0/8 (0)	115	>100	>100	25	>20		
34	100	12.5	0.1	0.02	0/8 (0)	117	50	>100	0.1	0.63	7/8 (87.5)	
35	>100	100	0.8	0.04	-7	118	100	>100	0.16	0.16	0/8 (0)	
36	100	12.5	0.1	0.04	7/8 (87.5)	119	>100	>100	6.3	0.31		
37	100	50	0.1	0.04	0/8 (0)	120	50	>100	0.1	0.63	8/8 (100)	
38	100	>100	0.1	0.31	8/8 (100)	121	>100	>100	0.1	0.16	0/8(0)	
39 40	>100	12.0 >100	0.1	0.08	(/8 (81.5)	122	>100	>100	21	2.5	0/8(0)	
41	>100	>100	100	>20		124	× 100 50	>100	0.8	1.25		
42	>100	>100	>100	>20		125	100	>100	6.3	>20		
43	>100	>100	1.6	5		126	>100	>100	3.1	1.25		
44	>100	100	0.2	0.63		127	>100	>100	3.1	0.63		
45	>100	50	0.8	0.31		128	>100	>100	0.4	1.25		
46	100	00 N100	0.1	0.31		129	>100	>100	0.2	0.04		
48	>100	50	0.2	1.25	1/8 (12.5)	131	100	>100	3.1	0.63	8/8 (100)	
49	>100	>100	1.6	20	-/ - ()	132	100	>100	1.6	0.16	, , , ,	
50	100	50	0.1	0.16	1/8 (12.5)	133	>100	>100	1.6	0.31		
51	>100	50	0.4	0.63	0.10.10	134	>100	>100	1.6	0.31		
52 52	>100	50	0.8	0.08	0/8 (0)	135	>100	>100	6.3 0.9	0.63		
03 54	>100	>100	0.8	0.31	2/8 (25)	130	>100	>100 50	0.2	0.03	4/8(50)	
55	100	>100	0.1	20	=/ U (20)	138	>100	>100	0.1	0.04	0/8 (0)	
56	100	100	0.1	2.5	2/8 (25)	139	100	>100	0.1	0.08	5/8 (62.5)	
57	>100	25	0.2	0.08	2/8 (25)	140	100	>100	0.1	0.02	7/8 (87.5)	
58	>100	>100	0.1	1.25		141	>100	50	0.1	0.04		
59 66	>100	>100	0.1	0.04	0/8 (0)	142	>100	>100	0.1	0.08		
60 61	>100	>100 25	0.8	0 9 5	0/8 (0)	143 144	00 ∧100	20 >100	0.1	0.10		
62	≥20 >100	>100	0.1	0.04	1/8 (12.5)	145	>100	>100	0.4	0.16		
63	>100	>100	0.1	2.5	0/8 (0)	146	>100	>100	0.4	0.16		
64	>100	>100	0.1	0.63	0/8 (0)	147	>100	>100	0.1	0.31	0/8 (0)	
65	50	25	0.1	5	1/8 (12.5)	148	>100	>100	0.1	0.31		
66 67	>100	>100	>100	>20		149	>100	12.5	0.2	0.08		
67 69	>100	>100	20 50	>20		150 151	>100	12.5 >100	0.2	0.63		
00 69	>100	>100	50 50	2.5		151	50	0.2	0.1	0.03		
70	>100	>100	>100	>20		153	>100	100	0.2	0.04	7/8 (87.5)	
72	>100	>100	>100	>20		154	>100	100	0.4	0.04	,/	
73	>100	>100	>100	>20		155	>100	>100	0.1	5	0/8 (0)	
74	>100	>100	50	2.5		156	>100	>100	>100	>20		
75	>100	>100	>100	>20		157	100	>100	3.1	10		

Table VI (Continued)

		in	vitro	<u></u>	in vivo, no. of			in	vitro		in vivo, no. of
	N	AIC, $\mu g/m$	L	MEC.	tal infected	tal infected			L	MEC,	tal infected
no.	$\overline{C.a.^{c}}$	A.f. ^c	T.a. ^c	$\mu g/mL^a$	(%) ^b	no.	$C.a.^{c}$	$A.f.^{c}$	$T.a.^{c}$	$\mu g/mL^a$	(%) ^b
158	100	50	0.2	0.16		179	100	50	0.1	1.25	
159	100	20	0.1	0.16		180	>100	>100	0.4	2.5	
160	>100	25	0.1	0.16	2/8(25)	181	>100	6.3	0.1	1.25	
161	>100	100	0.2	2.5		182	>100	12.5	0.1	2.5	
162	>100	100	0.1	0.08	8/8 (100)	183	>100	100	0.1	1.25	
163	100	>100	0.2	0.63	,	184	>100	>100	0.4	2.5	
164	>100	>100	>100	>20		185	>100	>100	1.6	10	
165	>100	>100	25	>20		186	>100	>100	6.3	>20	
166	>100	12.5	0.1	0.04		187	>100	>100	0.2	2.5	
167	50	25	0.1	0.08		188	>100	>100	0.2	2.5	
168	>100	25	0.1	0.04		189	>100	50	0.4	20	
169	>100	50	0.1	0.08		190	>100	50	0.8	2.5	
170	>100	25	0.1	0.04		191	>100	>100	0.6	1.25	
171	>100	>100	0.1	0.16		192	>100	>100	0.8	1.25	
172	>100	50	1.6	5		193	100	50	0.1	0.36	
173	>100	25	0.1	0.31		194	50	>100	0.8	2.5	
174	100	50	0.1	0.31		195	>100	>100	>100	20	
175	>100	25	0.1	0.31		196	>100	>100	50	20	
176	50	50	0.1	0.63		197	>100	>100	0.2	0.31	7/8 (87.5)
177	>100	>100	6.3	10		198	>100	>100	6.3	>20	
178	>100	>100	0.8	5							

^a For pseudomycelium formation of C. albicans. ^b Terminated at day 15 after infection. ^c Abbreviations: C.a. = Candida albicans; A.f. = Aspergillus fumigatus; T.a. = Trichophyton asteroides.

Table	VII.	In	Vitro and i	n Vivo	Antifungal	Activities	of	Ketoconazole	and	Selected	Triazole	Derivatives
-------	------	----	-------------	--------	------------	------------	----	--------------	-----	----------	----------	-------------

						in v	ivo				
			in vitro				guinea pig dermatophyt				
				inhibn for	murin	e candidiasis		skin sections			
fungistat MIC, µg		ingistatic act MIC, μg/mL	5. :	pseudomycelium formation of <i>C.a.</i> :	dose range,		dose,	yielding negative culture, no./total			
compd	C.a.ª	$A.f.^a$	$T.a.^a$	MEC, $\mu g/mL$	mg/kg	ED_{50} , ^{b,c} mg/kg	mg/kg	(%)			
2	50	100	0.1	0.16	12.5-100	32.3 (14.9-62.6)	40	27/48 ^e (56.3) ^g			
12	100	100	0.1	0.04	12.5 - 100	22.6 (0.9-47.7)	40	$7/48^{e}$ (14.6)			
38	100	>100	0.1	0.31	12.5 - 100	20.2 (9.7 - 31.0)	40	died ^f			
39	>100	12.5	0.1	0.08	12.5 - 100	$14.7 (4.9-22.0)^d$	40	died ^f			
92	50	25	0.1	0.08	12.5 - 100	25.6(3.8-55.1)	40	$11/48^{e}$ (22.9)			
KCZ	100	12.5	0.1	0.08	12.5-100	32.8 (21.2-49.8)	40 no drug	$8/48^{e}$ (16.7) $2/48^{e}$ (4.2)			

^aAbbreviations: C.a. = Candida albicans; A.f. = Aspergillus fumigatus; T.a. = Trichophyton asteroides. ^bDetermined at day 15 after infection. ^cPresumed by logit analysis with 95% confidence. ^dSignificantly different from the value of KCZ (relative potency of 39 to KCZ by parallel line assay using logit transformation = 2.5684 (1.2579-5.2443)). ^eSix skin sections cut out from each treated site. ^fDeath by toxicity. ^gSignificantly different from the values of KCZ, 12 and 92 (Fisher's exact probability, P < 0.01).

groups (25, 28-30, 32-34, 37) are particularly active in vitro but not in vivo, whereas the isopropyl group (12, 39) shows high activity in vitro and in vivo. The isopropyl group seems to be the best among the alkyl groups tried so far in R_1 .

Replacement of the triazole nucleus by the imidazole nucleus causes loss of in vitro and in vivo activities (55–65).

In the partial common structure of orally active antifungal azolylethanols (Bay n-7133,¹⁹ ICI 153066,³ SM 4470,²⁰ UK 49858²¹), the tertiary 1-phenyl azolylethanol structure seems to be the pharmacophore for oral antifungal activity. Therefore, the steric correlation around the asymmetric center carbon atom attached to the hydroxy and azolylmethyl groups seems to play an important role. Support for this point of view comes from the comparison of in vivo and MEC activity in the racemic compound with its optically active one. 83 (R-(-)) is much more active than 84 (S-(+)), and their racemate 2 is less active than 83 (R-(-)) but still much more active than 84 (S-(+)) in both in vitro and in vivo activities.²²

Antifungal compounds containing the imidazole or the 1,2,4-triazole ring system are known to block the 14α -demethylation reaction in ergosterol biosynthesis in fungi, which is a cytochrome P-450 enzyme system.^{23a,b} Thus, antifungals that are active inhibitors should bind to cytochrome P-450. Computer graphics^{23a} shows how optical antipodes could interfere with ergosterol biosynthesis. To our knowledge, only a small amount of data is available on the relationship between optical antipodes and antifungal activities in numerous antifungal agents.²⁴

⁽¹⁹⁾ Eng, R. H. K.; Smith, S. M. Proceedings, 22nd ICAAC, Miami Beach, FL, 4-6 Oct. 1982; Abstract 307.

 ⁽²⁰⁾ Okuda, T.; Ichise, K.; Tanio, T.; Saji, I. Proceedings, 23rd ICAAC, Las Vegas, 24-26 Oct. 1983; Abstract 265B.

⁽²¹⁾ Fromtling, R. A. Drugs Future 1985, 10(12), 982.

⁽²²⁾ The superiority of the R-(-) isomer has also been found with other azole derivatives of the same general structure. U.S. Patent 4526 983; Chem. Abstr. 1986, 104, 5872m. Jpn. Patent 58 203 973; Chem. Abstr. 1984, 100, 139112q. Ger. Patent 3 425 848; Chem. Abstr. 1986, 105, 42818q. Ger. Patent 3 440 118.

^{(23) (}a) See ref 15. (b) Heeres, J. In Medicinal Chemistry: The Role of Organic Chemistry; Roberts, S. M., Price, B. J., Eds.; Academic: Orlando, 1985; p 249 and references cited therein.

⁽²⁴⁾ Sugavanam, B. Pestic. Sci. 1984, 15, 296.

For diastereomeric diols II and III, the erythro form is much more active than the threo form (88, 89; 100, 101; 104, 105; 106, 107; 108, 109).

Although we stated that the presence of the tertiary 1-phenyl azolylethanol structure seems to be essential for oral antifungal activity, several five-membered 1.3-dioxa compounds III ($Y = CH_2$, CO, SO), which have no hydroxy group, show potent in vitro and in vivo activity (117, 120, 131, 137, 139, 140). The 1,3-dioxa structure is also found in ketoconazole,¹ itraconazole,²⁵ and related compounds. These results indicate that, like the tertiary 1-phenyl azolylethanol structure, the five-membered 1,3-dioxa structure is also an important pharmacophore for oral antifungal activity.

Experimental Section

Melting points were determined in a Büchi capillary melting point apparatus and are uncorrected. NMR spectra were obtained with a Varian T-60 spectrometer. Elemental analyses were performed by the analytical department of Shionogi Research Laboratories and are within $\pm 0.4\%$ of the calculated values.

2-(2,4-Dichlorophenyl)-2-hydroxy-4-methyl-1-(1H-1,2,4triazol-1-yl)pentan-3-one (12) and 2-(2,4-Dichlorophenyl)-2-hydroxy-4-methyl-1-(4H-1,2,4-triazol-4-yl)pentan-3-one (74) (Method A). To a solution of 2,4-dichlorobenzyl isopropyl ketone (3.6 g, 15.6 mmol) in acetic anhydride (2.4 g, 23.5 mmol) was added portionwise N, N, N', N'-tetramethyldiaminomethane (2.4 g, 23.5 mmol) with stirring at room temperature. After 15 min at room temperature, the mixture was diluted with aqueous NaHCO3 and extracted with CH_2Cl_2 . The organic layer was washed with H_2O , dried over Na_2SO_4 , and evaporated. The residue was chroma-tographed on a column of silica gel. The fractions eluted with CH_2Cl_2 were collected to obtain VI (R_1 = isopropyl, R_2 = 2,4dichlorophenyl, 3.1 g) as an oil. ¹H NMR ($CDCl_3$): δ 5.85 (1 H, s, C=CH), 6.37 (1 H, s, C=CH). To a solution of the above product VI (3.1 g, 12.8 mmol) in acetone (16 mL) and 10% aqueous NaOH (0.63 mL, 12.8 mmol) was added 30% H_2O_2 (4.34 g, 38.2 mmol) dropwise with stirring at room temperature. After 30 min at room temperature, the mixture was mixed with ice water and aqueous $NaHCO_3$ and extracted with CH_2Cl_2 . The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated. The residue was chromatographed on a column of silica gel. The fractions eluted with $\overline{CH_2Cl_2}$ were collected to obtain VII (R₁ = isopropyl, $R_2 = 2,4$ -dichlorophenyl, 3.1 g) as an oil. ¹H NMR $(CDCl_3)$: δ 3.07 (1 H, d, J = 5.0 Hz, oxirane), 3.47 (1 H, d, J =5.0 Hz, oxirane). To a solution of 1,2,4-triazole (1.24 g, 18 mmol) in DMF (15.5 mL) was added 50% NaH (dispersion in mineral oil, 172 mg, 3.6 mmol) at room temperature. After the solution was stirred at room temperature for 5 min, the above oxirane VII $(R_1 = isopropyl, R_2 = 2,4$ -dichlorophenyl, 3.1 g, 12 mmol) was added, and the mixture was stirred at 50 °C for 17 h. The reaction mixture was poured into ice water and extracted with Et₂O. The organic layer was washed with H_2O , dried over Na_2SO_4 , and evaporated to remove the solvent. The residue was chromatographed on a column of silica gel. The fractions eluted with 2% $MeOH/CH_2Cl_2$ were collected to obtain 12 [1.8 g, mp 163.5–165 °C, from $AcOEt/(i-Pr)_2O$, overall yield 46%]

The fractions eluted with 7% $MeOH/CH_2Cl_2$ were collected to obtain 74 (150 mg, mp >250 °C, overall yield 4%, from AcOEt). 12 ¹H NMR (Me₂SO- d_6): δ 0.87 (3 H, d, J = 7 Hz, CH₃), 1.08 (3 H, d, J = 7 Hz, \tilde{CH}_3), 2.70 (1 H, m, CH), 4.68 (1 H, d, $\tilde{J} = 14$ Hz, CHH), 5.13 (1 H, d, J = 14 Hz, CHH), 7.08 (1 H, s, OH), 7.25–7.47 (3 H, m, aromatic), 7.55 (1 H, s, triazole), 8.12 (1 H, s, triazole). Anal. $(C_{14}H_{15}Cl_2N_3O_2)$ C, H, Cl, N. 74 ¹H NMR (Me₂SO-d₆): δ 0.85 (3 H, d, J = 7 Hz, CH₃), 1.03 (3 H, d, J = 7 Hz, CH₃), 2.63 (1 H, m, CH), 4.53 (1 H, d, J = 14 Hz, CHH), 4.95 (1 H, d, J =14 Hz, CHH), 7.22 (1 H, s, OH), 7.97 (2 H, s, triazole), 7.35-9.60 (3 H, m, aromatic). Anal. $(C_{14}H_{15}Cl_2N_3O_2)$ C, H, Cl, N. The other compounds I and VIII in method A were prepared

in a similar manner.

4'-Chloro-2-(4-chlorophenyl)-2-hydroxy-3-(1H-1,2,4-tri-

azol-1-yl)propiophenone (3) and 4'-Chloro-2-(4-chlorophenyl)-2-hydroxy-3-(4H-1,2,4-triazol-4-yl)propiophenone (68) (Method B). An ethereal solution of diazomethane prepared from N-(nitrosomethyl)urea (5.54 g, 53.7 mmol) and aqueous KOH (86% KOH, 15.1 g, 231 mmol) was added to a solution of 4,4'dichlorobenzil (5 g, 1.8 mmol) in dioxane (50 mL). After the solution was stirred at room temperature for 16 h, the reaction mixture was concentrated in vacuo to give VII ($R_1 = R_2 = 4$ chlorophenyl) as an oil. This product was dissolved in DMF (50 mL) and added to a mixture of 1,2,4-triazole (1.9 g, 27.5 mmol), NaH (50% dispersion in mineral oil, 1.3 g, 27.1 mmol), and DMF (19 mL). After the solution was stirred at 50 °C for 20 min, the reaction mixture was mixed with ice water and extracted with benzene. The organic layer was washed with H₂O, dried over Na_2SO_4 , and evaporated to remove the solvent. The fractions eluted with 2% MeOH/CH₂Cl₂ were collected to obtain 3 [1 g, mp 102-104 °C, overall yield 13%, from AcOEt/(*i*-Pr)₂O]. The fractions eluted with 7% MeOH/CH₂Cl₂ were collected to obtain 68 (420 mg, mp 232-233 °C, from MeOH/AcOEt, overall yield 7%). 3 ¹H NMR (Me₂SO- d_6): δ 4.33 (1 H, d, J = 14 Hz, CHH), 5.00 (1 H, d, J = 14 Hz, CHH), 6.18 (1 H, s, OH), 7.10–7.97 (10 H, m, aromatic, triazole). Anal. $(C_{17}H_{13}Cl_2N_3O_2)$ C, H, Cl, N. **68** ¹H NMR (Me₂SO- d_6): δ 4.70 (2 H, s, CH₂), 7.35–8.00 (11 H, m, aromatic, triazole, OH). Anal. (C₁₇H₁₃Cl₂N₃O₂) C, H, Cl, N. The other compounds in method B were prepared in a similar

manner. 2-(2,4-Dichlorobenzoyl)-2-(2,4-dichlorophenyl)oxirane (VII, $\mathbf{R}_1 = \mathbf{R}_2 = 2,4$ -Dichlorophenyl) (Method A). To 9.2 g (0.09 mol) of N, N, N', N'-tetramethyldiaminomethane was added 25 g (0.075 mol) of 2-(2,4-dichlorophenyl)-2',4'-dichloroacetophenone (V, $R_1 = R_2 = 2,4$ -dichlorophenyl). Then 9.2 g (0.09 mol) of Ac₂O was added to the mixture was stirring at 50 °C. After 30 min at 50 °C, the mixture was mixed with ice water and extracted with AcOEt. The organic layer was washed with dilute HCl, aqueous NaHCO₃, and H₂O, dried over Na₂SO₄, and evaporated. The residue was washed with petroleum ether to give 17.1 g (66%, mp 62–62 °C) of VI ($R_1 = R_2 = 2,4$ -dichlorophenyl). ¹H NMR (CDCl₃): δ 6.12 (1 H, s, vinyl H), 6.22 (1 H, s, vinyl H), 7.27-7.57 (6 H, m, aromatic). Anal. $(C_{15}H_8Cl_4O)$ C, H, Cl.

To a mixture of the above product VI (17 g, 0.049 mol), DMF (85 mL), and aqueous 20% NaOH (4.9 mmol) was added 30% H_2O_2 (8.1 g, 0.07 mol) dropwise with stirring at 24 °C. After the addition, the mixture was stirred for 30 min at room temperature. The reaction mixture was mixed with ice water and extracted with benzene. The organic layer was washed with H₂O, dried over Na_2SO_4 , and evaporated to give VII ($R_1 = R_2 = 2,4$ -dichlorophenyl) (15.6 g, mp 79-81 °C, 88%, after washing with petroleum ether, 69 mL). ¹H NMR (CDCl₃): δ 3.15 (1 H, d, J = 15 Hz, oxirane), 3.33 (1 H, d, J = 15 Hz, oxirane), 7.10–7.50 (6 H, m, aromatic). IR (Nujol): 1705 cm⁻¹. Anal. ($C_{15}H_8Cl_4O_2$) C, H, Cl.

2-(2,4-Dichlorobenzoyl)-2-(2,4-dichlorophenyl)oxirane (VII, $R_1 = R_2 = 2,4$ -Dichlorophenyl) (Method C). A mixture of 2,2',4,4'-tetrachlorobenzoin (X, $R_1 = R_2 = 2$,4-dichlorophenyl, 3.0 g, 8.6 mmol), 80% paraformaldehyde (857 mg, 20.2 mmol), and KHCO₃ (1.287 g, 12.9 mmol) in 80% aqueous DMF (14 mL) was stirred under N_2 atmosphere for 5 h at room temperature. The reaction mixture was diluted with aqueous NaCl and extracted with benzene. The organic layer was washed with H₂O, dried over Na_2SO_4 , and evaporated. The residue was chromatographed on a column of silica gel. The fractions eluted with benzene were collected to obtain the starting material (X, 60 mg, 2%). The fractions eluted with Et_2O were collected to obtain XI $(\mathrm{R}_1=\mathrm{R}_2=2,4\text{-dichlorophenyl},\mathrm{R}_3=\mathrm{H},\,3.46$ g, mp 59–60 °C, 95%, after washing with Et₂O/*n*-hexane). ¹H NMR (CDCl₃): δ 3.33 (1 H, s, OH), 3.40 (1 H, dd, J = 10 Hz and 18 Hz, CHHOH), 4.28(1 H, dd, J = 10 Hz and 18 Hz, CHHOH), 5.0 (1 H, s, OH). Anal. $(C_{15}H_{10}Cl_4O_3 \cdot 1/2 n$ -hexane) C, H.

A mixture of the above product (XI, $R_1 = R_2 = 2,4$ -dichlorophenyl, $R_3 = H$, 3.80 g, 9 mmol) and p-TsCl (2.10 g, 11 mmol) in pyridine (10 mL) was stirred at room temperature for 15 h. The reaction mixture was diluted with 5% K_2CO_3 and extracted with benzene. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated to give XI ($R_1 = R_2 = 2,4$ -dichlorophenyl, $R_3 = p$ -CH₃PhSO₂, 4.32 g, mp 148–150 °C, 90%, after washing with Et₂O/*n*-hexane). ¹H NMR (CDCl₃): δ 2.43 (3 H, s, CH₃), $4.82 (2 \text{ H}, \text{dd}, J = 11 \text{ Hz}, \text{CH}_2\text{O}), 4.80 (1 \text{ H}, \text{br s}, \text{OH}), 6.9-8.7$

⁽²⁵⁾ Heeres, J.; Backx, L. J. J.; Van Cutsem, J. J. Med. Chem. 1984, 27, 894

Novel Azolylpropanolones and Related Compounds

(10 H, m, aromatic). Anal. ($C_{22}H_{16}Cl_4O_5S$) C, H, Cl, S.

A mixture of the above product XI ($R_1 = R_2 = 2,4$ -dichlorophenyl, $R_3 = p$ -CH₃PhSO₂, 1.0 g, 1.87 mmol) and Et₂N (0.78 mL, 5.62 mmol) in CH₂Cl₂ (3 mL) was stirred at 50 °C for 1 h. The reaction mixture was evaporated, diluted with 5% K₂CO₃, and extracted with benzene. The organic layer was washed with H₂O and evaporated. The residue was chromatographed on silica gel. The fractions eluted with CHCl₃ gave VII ($R_1 = R_2 = 2,4$ -dichlorophenyl, 660 mg, mp 80-81 °C, 97%, after washing with Et₂O/*n*-hexane). This compound was identical with authentic sample described in method A in comparison with IR and NMR spectra.

2-(4-Chlorophenyl)-2-hydroxy-3-(1*H*-1,2,4-triazol-1-yl)-2',4'-dichloropropiophenone (11) and 2-(4-Chlorophenyl)-2hydroxy-3-(4*H*-1,2,4-triazol-4-yl)-2',4'-dichloropropiophenone (73) (Method D). A mixture of 2-(4-chlorophenyl)-2',4'-dichloroacetophenone (2.9 g, 9.7 mmol) and sulfuryl chloride (4 g, 29.6 mmol) was stirred at 70 °C for 1 h. The reaction mixture was poured into ice water and aqueous NaHCO₃ and extracted with CH₂Cl₂. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated. The residue was chromatographed on a column of silica gel. The fractions eluted with 50% benzene/ *n*-hexane gave XII (R₁ = 4-chlorophenyl, R₂ = 2,4-dichlorophenyl, 2.5 g) as an oil. ¹H NMR (CDCl₃): δ 6.08 (1 H, s, ClCH).

To a stirred solution of 1,2,4-triazole (620 mg, 9 mmol) and NaH (50% dispersion in mineral oil, 430 mg, 9 mmol) in Me₂SO (5 mL) was added 80% paraformaldehyde (340 mg, 9 mmol) with ice cooling in nitrogen atmosphere. Then a solution of the above product XII (2.5 g, 7.5 mmol) in Me₂SO (5 mL) was added to the above reaction mixture with stirring at room temperature. After 40 h at room temperature with stirring, the reaction mixture was poured into ice water and extracted with Et₂O. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated. The residue was chromatographed on a column of silica gel. The fractions eluted with 2% MeOH/CH₂Cl₂ were collected to obtain 11 [690 mg, mp 92–95 °C, overall yield 18%, from AcOEt/(*i*-Pr)₂O]. The fractions eluted with 7% MeOH/CH₂Cl₂ were collected to obtain 73 (280 mg, mp 219–221 °C, from AcOEt, overall yield 7%).

2-(2,4-Dichlorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)-2',4'-dichloropropiophenone (2) (Method E). A mixture of 2-(2,4-dichlorophenyl)-3-(1H-1,2,4-triazol-1-yl)-2',4'-dichloropropiophenone (XIII, $R_1 = R_2 = 2,4$ -dichlorophenyl,⁴ 1.0 g, 2.41 mmol), K_2CO_3 (1.0 g, 7.25 mmol), and DMF (8 mL) was stirred vigorously at room temperature for 5 h under an atmospheric pressure of dry air. The reaction mixture was diluted with CH₂Cl₂ and washed with H₂O. The organic layer was dried over Na₂SO₄ and evaporated to leave a solid, which was chromatographed on silica gel. Elution with 5% MeOH/CH₂Cl₂ yielded 2 (351 mg, 34%), which was identical with the authentic sample prepared by method A in comparison with IR and and NMR spectra. ¹H NMR (CDCl₃): δ 4.93 (1 H, d, J = 14 Hz, CHH), 5.23 (1 H, d, J = 14 Hz, CHH), 6.63 (1 H, s, OH), 6.90–7.16 (6 H, m, aromatic), 7.87 (1 H, s, triazole), 7.90 (1 H, s, triazole).

(RS)-1,2-Bis(2,4-dichlorophenyl)prop-2-en-1-ol (78). (a) NaBH₄ (659 mg, 17.3 mmol) was added to a cooled solution (0–5 °C) of the enone 77 (6.00 g, 17.3 mmol) and CeCl₃·7H₂O (6.46 g, 17.3 mmol) in MeOH (412 mL) over 30 min. The mixture was evaporated, and the residue was extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated to leave an oil, which was chromatographed on silica gel. Elution with 5% AcOEt/*n*-hexane gave 78 (3.50 g, 58%) as a colorless oil. IR (film): 3550 and 1580 cm⁻¹. ¹H NMR (CDCl₃): δ 7.41–6.86 (6 H, m, aromatic), 5.98 (1 H, d, J = 6 Hz, CHOH), 5.55 and 5.10 (each 1 H, each d, J = 1 Hz, C==CH₂), and 2.42 (1 H, d, J = 6 Hz, CHOH, exchanged with D₂O). Anal. (C₁₅H₁₀Cl₄O) C, H, Cl.

(b) *i*-Bu₂AlH (1.0 M solution in hexane, 2 mL) was added to a stirred solution of the enone 77 (692 mg, 2 mmol) in CH_2Cl_2 (4 mL) at -78 °C. After 3 h of stirring at -78 °C, aqueous NH₄Cl solution (2 mL) was added and temperature was raised to 25 °C. Layers were separated, and the organic layer was dried over Na₂SO₄ and evaporated. The residue was purified with silica gel chromatography (5% AcOEt/*n*-hexane) to yield 78 (303 mg, 44%) as a colorless oil, which was identical with the material described in method A.

Journal of Medicinal Chemistry, 1987, Vol. 30, No. 6 1065

(R)-(-)-1,2-Bis(2,4-dichlorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propan-1-one (83). (+)-Diisopropyl L-tartrate (1.17 g, 5 mmol) was added to a stirred solution of Ti(O-i-Pr)4 (1.42 g, 5 mmol) in CH₂Cl₂ (20 mL) at -20 °C. The allylic alcohol 78 (1.75 g, 5 mmol) in CH_2Cl_2 (10 mL) was added to the mixture. After 5 min, tert-butyl hydroperoxide (4.0 M solution of 1,1dichloroethane, 0.625 mL, 2.5 mmol) was added, and the mixture was kept at -20 °C for 15 h. H₂O was added, and the resulting emulsion was filtered through a pad of Celite. The organic layer was separated, dried over Na₂SO₄, and evaporated, and the residue was chromatographed on silica gel. Elution with 5% AcOEt/nhexane afforded (S)-1,2-bis(2,4-dichlorophenyl)prop-2-en-1-ol (80) (743 mg, 42%) as a colorless oil, $[\alpha]^{25}_{D}$ -8.2° (c 1.02, CHCl₃) (90% ee),^{8b} whose IR and NMR spectra were superimposable with those of the racemic 78. Further elution with the same solvent gave (1S,2R)-1,2-bis(2,4-dichlorophenyl)-2,3-epoxypropan-1-ol (79) (688 mg, 38%) as a colorless oil, [α]²²_D -76.3° (c 1.01, CHCl₃) (84% ee).^{6b} ¹H NMR (CDCl₃): δ 7.60-7.00 (6 H, m, aromatic), 5.64 (1 H, d, J = 3 Hz, CHOH), 3.00 and 2.72 (each 1 H, each d, J = 4.5 Hz, CH₂), and 2.70 (1 H, d, J = 3 Hz, OH).

A mixture of the epoxy alcohol **79** (500 mg, 1.37 mmol) and PCC (600 mg, 2.78 mmol) in CH_2Cl_2 (10 mL) was stirred at room temperature for 18 h. Et_2O (10 mL) was added to the mixture, and the solution was filtered through a column of silica gel to give the epoxy ketone (485 mg, 98%), which was used in the next step without further purification. A solution of the epoxy ketone in DMF (2 mL) was added to a stirred mixture of 1,2,4-triazole (143 mg, 2.07 mmol) and NaH (50% dispersion in mineral oil, 66 mg, 1.38 mmol) in DMF (2 mL) and stirred at 60 °C for 4 h.

The mixture was dissolved in CH₂Cl₂, and the organic layer was washed with aqueous NH₄Cl solution, dried over Na₂SO₄, and evaproated. The residue was chromatographed on silica gel with 10% MeOH/CH₂Cl₂ as the eluent, yielding 83 (352 mg, 59%): mp 111–113 °C (from Et₂O); $[\alpha]^{25}_{D}$ –212.7° (*c* 1.003, CHCl₃). Anal. (C₁₇H₁₁Cl₄N₃O₂⁻¹/₄Et₂O) C, H, Cl, N.

(S)-(+)-1,2-Bis(2,4-dichlorophenyl)-2-hydroxy-3-(1*H*-1,2,4-triazol-1-yl)propan-1-one (84). A procedure similar to that described above for 83 was carried out. Thus, asymmetric epoxidation of the allylic alcohol 78 (1.75 g, 5 mmol) using (-)-di-isopropyl-D-tartrate gave (1*R*,2*S*)-1,2-bis(2,4-dichlorophenyl)-2,3-epoxypropan-1-ol (81) (755 mg, 41%) as a colorless oil, $[\alpha]^{22}_{\rm D}$ +69.7° (c 1.033, CHCl₃) (84% ee).^{6b} PCC oxidation of 81 (500 mg, 1.37 mmol) followed by reaction of the resulting epoxy ketone with the sodium salt of 1,2,4-triazole yielded 84 (287 mg, 48% from 80): mp 111-113 °C (from Et₂O); $[\alpha]^{25}_{\rm D}$ +206.4° (c 1.006, CHCl₃). Anal. (C₁₇H₁₁Cl₄N₃O₂·¹/₄Et₂O) C, H, Cl, N. (*R*)-(-)-1,2-Bis(2,4-dichlorophenyl)-2-[(4-bromobenzoyl)-

(*R*)-(-)-1,2-Bis(2,4-dichlorophenyl)-2-[(4-bromobenzoyl)oxy]-3-(1*H*-1,2,4-triazol-1-yl)propan-1-one (85). To a stirred solution of 83 (90 mg, 0.21 mmol) in CH₂Cl₂ (6 mL) were added Et₃N (32 mg, 0.32 mmol) and 4-(dimethylamino)pyridine (6 mg, 0.05 mmol) at room temperature. 4-Bromobenzoic anhydride (150 mg, 0.39 mmol) was added to the mixture at room temperature. After 16 h, the mixture was diluted with aqueous NaHCO₃ and extracted with CH₂Cl₂. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated. The residue was chromatographed on silica gel. The fractions eluted with 20% AcOEt/benzene were collected to obtain 85 [45 mg, mp 143-145 °C, from Et₂O/(*i*-Pr)₂O, 35%]. ¹H NMR (CDCl₃): δ 5.60 (2 H, s, CH₂), 6.88–7.83 (12 H, m, aromatic and triazole). [α]²³_D -59.7° (*c* 1.050, CHCl₃). Anal. (C₂₄H₁₄BrCl₄N₃O₃) C, H, Br, Cl, N. X-ray Analysis of 85. Crystals obtained from a benzene

X-ray Analysis of 85. Crystals obtained from a benzene solution are solvated by benzene with a 1:1 molecular ratio. Crystal data: $C_{24}H_{14}BrCl_4N_3O_3\cdot C_6H_6$, fw = 692.2, orthorhombic, space group $P2_12_12_1$, a = 16.517 (3), b = 23.708 (4), c = 7.813 (1) Å, V = 3059.4 (8) Å³, Z = 4, $D_x = 1.503$ g cm⁻³.

The structure was solved by the heavy-atom method and refined by the block-diagonal least-squares technique to R = 0.081 (excluding H atoms) for 2284 reflections of 3040 unique ones measured in the range of $\theta \le 25^{\circ}$, using Mo $K\alpha$ radiation. The absolute configuration was determined by the anomalous-dispersion method, with differences between the intensities of Bijvoet pairs ($\Delta f'$) = -0.374 and $\Delta f'' = 2.456$ for Br).

1-(4-Chlorophenyl)-2-(2,4-dichlorophenyl)-3-(1H-1,2,4triazol-1-yl)propylene Glycol (108, 109). To a solution of 24 (7 g, 17.6 mmol) in EtOH (35 mL) was added NaBH₄ (700 mg, 18.5 mmol), and the mixture was stirred for 1 h at room temperature. The reaction mixture was acidified with 6 N HCl, basified with aqueous NaHCO₃, and extracted with CH₂Cl₂. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated. The residue was chromatographed on a column of silica gel. The fractions eluted with 5% MeOH/CH₂Cl₂ were collected to obtain 108 (4.2 g, mp 184–186 °C, from MeOH/CH₂Cl₂, 60%). ¹H NMR (Me₂SO-d₆) δ 3.73 (1 H, d, J = 15 Hz, CHH), 5.22 (1 H, d, J = 15 Hz, CHH), 5.57 (1 H, d, J = 4.5 Hz, CHOH), 5.82 (1 H, d, J = 4.5 Hz, OH), 5.83 (1 H, s, OH), 7.13–7.50 (7 H, m, aromatic), 7.55 (1 H, s, triazole), 8.08 (1 H, s, triazole). Anal. (C₁₈H₁₂Cl₃N₃O₃) C, H, Cl, N.

The fractions eluted with 10% MeOH/CH₂Cl₂ were collected to obtain 109 (192 mg, mp 228-230 °C, from MeOH, 3%). ¹H NMR (Me₂SO-d₆): δ 4.87 (1 H, d, J = 15 Hz, CHH), 5.45 (1 H, d, J = 15 Hz, CHH), 5.62 (1 H, d, J = 4.5 Hz, CHOH), 5.97 (1 H, s, OH), 6.32 (1 H, d, J = 4.5 Hz, OH), 6.97-7.43 (7 H, m, aromatic), 7.58 (1 H, s, triazole), 8.35 (1 H, s, triazole). Anal. (C₁₈H₁₂Cl₃N₃O₃) C, H, Cl, N.

The other glycols (86–114) were prepared in a similar manner. 4-(2,4-Dichlorophenyl)-5-(4-chlorophenyl)-2-oxo-4-[(1H-1,2,4-triazol-1-yl)methyl]-1,3-dioxolane (115). To a solution of 108 (600 mg, 1.5 mmol) in CHCl₃ (12 mL) was added N,N'carbonyldiimidazole (610 mg, 3.76 mmol), and the mixture was refluxed for 1 h. The reaction mixture was added to ice water, acidified with 6 N HCl, basified with aqueous NaHCO₃, and extracted with CH₂Cl₂. The organic layer was washed with water, dried over Na₂SO₄, and evaporated. The resulting residue was chromatographed on a column of silica gel. The fractions eluted with 2% MeOH/CH₂Cl₂ were collected to obtain 115 [550 mg, mp 178–179 °C, from AcOEt/(*i*-Pr)₂O, 86%]. IR (Nujol): 1810 cm⁻¹. Anal. (C₁₈H₁₂Cl₃N₃O₃) C, H, Cl, N.

The other 1,3-dioxolanes (116–136, 158, and 159) were prepared in a similar manner.

X-ray Results. Crystal data, compound 115: recrystallization from dioxane, mp 184–186 °C, $C_{18}H_{12}Cl_3N_3O_{3^*}l_{/2}C_4H_8O_2$, triclinic, space group $P\bar{1}$, $\alpha = 9.885$ (2), b = 12.467 (2), c = 8.917 (1) Å, $\alpha = 104.81$ (1)°, $\beta = 100.99$ (2)°, $\gamma = 85.44$ (2)°. The unit cell contains two molecules and one dioxane molecule. On refinement (all H atoms included) the conventional R value converged to R = 0.045 for 2954 reflections.

4-(2,4-Dichlorophenyl)-5-(4-chlorophenyl)-2-oxo-4-[(1H-1,2,4-triazol-1-yl)methyl]-1,3-dioxolane (116). To a solution of 109 (100 mg, 0.25 mmol) in CH₂Cl₂ (10 mL) was added N,-N'-carbonyldiimidazole (130 mg, 0.8 mmol), and the mixture was refluxed for 1 h. The reaction mixture was treated as above. The resulting residue was chromatographed on a column of silica gel. The fractions eluted with 50% benzene/AcOEt were collected to obtain 116 (50 mg, foam, 47%). IR (CHCl₃): 1815 cm⁻¹. Anal. (C₁₈H₁₂Cl₃N₃O₃) C, H, Cl, N.

4-(4-Chlorophenyl)-5-(2,4-dichlorophenyl)-4-[(1H-1,2,4-triazol-1-yl)methyl]-1,3,2-dioxathiolane 2-Oxide (139, 140). To a solution of 108 (1.7 g, 4.26 mmol) and Et₃N (646 mg, 6.4 mmol) in CHCl₃ (17 mL) was added SOCl₂ (760 mg, 6.4 mmol) in CHCl₃ (3 mL), and the mixture was stirred for 30 min at room temperature. To the reaction mixture was added aqueous NaH-CO₃, and the mixture was extracted with CH₂Cl₂. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated. The resulting residue was chromatographed on a column of silica gel. The fractions eluted with 20% AcOEt/benzene were collected to obtain 139 [366 mg, mp 163.5–164.5 °C, from AcOEt/(*i*-Pr)₂O, 19%]. Anal. (C₁₇H₁₂Cl₃N₃O₃S) C, H, Cl, N, S.

The fractions eluted with 20% AcOEt/benzene and AcOEt were collected to obtain 140 [522 mg, mp 108–109 °C, from $AcOEt/(i-Pr)_2O$, 28%]. Anal. ($C_{17}H_{12}Cl_2N_3O_3S$) C, H, Cl, N, S.

The other 1,3,2-dioxathiolane 2-oxides (137–146) were prepared in a similar manner.

4-(4-Chlorophenyl)-5-(2,4-dichlorophenyl)-4-[(1H-1,2,4triazol-1-yl)methyl]-1,3-dioxolane (147). To a solution of 109 (500 mg, 1.25 mmol) in DMF (5 mL) was added NaH (180 mg, 3.75 mmol, 50% dispersion in mineral oil) with stirring at room temperature. After 5 min, bromochloromethane (490 mg, 3.78 mmol) was added, and the mixture was heated at 50 °C for 1 h. The reaction mixture was mixed with ice water and shaken with Et₂O. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated to remove the solvent. The residue was chromatographed on a column of silica gel. The fractions eluted with 3% MeOH/CH₂Cl₂ were collected to obtain 147 (280 mg, mp 201–203 °C, from AcOEt, 54%). Anal. ($C_{18}H_{14}Cl_3N_3O_2$) C, H, Cl, N.

The other 1,3-dioxolanes (148-154) were prepared in a similar manner.

4-(4-Chlorophenyl)-5-(2,4-dichlorophenyl)-2,2-dimethyl-4-[(1*H*-1,2,4-triazol-1-yl)methyl]-1,3-dioxolane (155). To a mixture of 110 (500 mg, 1.25 mmol), acetone (20 mL), and DMF (1 mL) was added 2,2-dimethoxypropane (2 mL), *p*-toluenesulfonic acid (100 mg), and ZnCl₂ (50 mg), and the mixture was refluxed for 68 h. The reaction mixture was mixed with aqueous NaHCO₃ and shaken with CH₂Cl₂. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated to remove the solvent. The residue was chromatographed on a column of silica gel. The fractions eluted with 50% benzene/AcOEt were collected to obtain 155 [110 mg, mp 141–142 °C, 20% after washing with (*i*-Pr)₂O]. Anal. (C₂₀H₁₈Cl₃N₃O₂) C, H, Cl, N.

Compound 156 was prepared in a similar manner.

4-(2,4-Dichlorophenyl)-5-(4-fluorophenyl)-2-thioxo-4-[(1*H*-1,2,4-triazol-1-yl)methyl]-1,3-dioxolane (157). To a solution of 92 (500 mg, 1.3 mmol) in CHCl₃ (10 mL) was added N,N^{-} (thiocarbonyl)diimidazole (700 mg, 3.9 mmol), and the mixture was refluxed for 1 h. The reaction mixture was added to ice/water and extracted with CHCl₃. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated. The resulting residue was chromatographed on a column of silica gel. The fractions eluted with 20% AcOEt/benzene were collected to obtain 157 [360 mg, mp 169–170 °C, from AcOEt/(*i*-Pr)₂O, 64.9%]. Anal. (C₁₈H₁₂Cl₂FN₃O₂S) C, H, Cl, F, N, S.

1-(4-Fluorophenyl)-1-methyl-2-(4-fluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propylene Glycol (160, 161) (Method F). Compound 9 (4 g, 12.1 mmol) in dry THF (80 mL) was added to methylmagnesium bromide in Et₂O (80 mL) prepared from magnesium (1.18 g, 49.2 mmol) and methyl iodide (7 g, 49.3 mmol), and the mixture was stirred for 1 h at room temperature. The mixture was poured into ice water and extracted with AcOEt. The organic layer was washed with H₂O and dried over Na₂SO₄. After evaporation of organic solvent, the residue was chromatographed on a silica gel column (lobar column). The fractions eluted with 33% benzene/AcOEt were collected to obtain 160 (1.15 g, mp 163–164 °C, from Et₂O/n-hexane, 28%). ¹H NMR (CDCl₃): δ 1.43 (3 H, s, CH₃), 2.60 (1 H, s, OH), 4.82 (1 H, s, OH), 4.02 (1 H, d, J = 15 Hz, CHH), 4.92 (1 H, d, J = 15 Hz, CHH), 6.70–7.70 (10 H, m, aromatic and triazole). Anal. $(C_{18}H_{17}F_2N_3O_2)$ C, H, F, N.

The fractions eluted with AcOEt were collected to obtain 161 (640 mg, mp 170–171 °C, from Et₂O/*n*-hexane, 12%). ¹H NMR (CDCl₃): δ 1.50 (3 H, s, CH₃), 3.57 (1 H, s, OH), 4.45 (1 H, d, *J* = 15 Hz, CHH), 4.83 (1 H, d, *J* = 15 Hz, CHH), 5.40 (1 H, s, OH), 6.60–7.67 (10 H, m, aromatic and triazole). Anal. (C₁₈H₁₇F₂N₃O₂·C₂H₂O₄·¹/₂H₂O) C, H, F, N.

The other compounds (method F) listed in Table V were prepared in a similar manner.

1-(4-Fluorophenyl)-1-methyl-2-(4-fluorophenyl)-3-(1*H*-1,2,4-triazol-1-yl)propylene Glycol (160, 161) (Method G). To a solution of 4,4'-difluorobenzoin (X; $R_1 = R_2 = 4$ -FPh, 1.50 g, 6.1 mmol) in DMF (7 mL) was added a mixture of 80% paraformaldehyde (0.68 g, 18 mmol) and KHCO₃ (0.91 g, 9.1 mmol) with stirring at room temperature under nitrogen atmosphere. After 1 h, the mixture was diluted with H₂O and extracted with benzene. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated. The residue was chromatographed on a column of silica gel. The fractions eluted with 2% MeOH/CHCl₃ were collected to obtain XIV ($R_1 = R_2 = 4$ -FPh, 1.68 g) as an oil. IR (film): 3450 and 1660 cm⁻¹. ¹H NMR (CDCl₃): δ 2.65 (1 H, dd, J = 9 Hz and 12 Hz, CHOH), 3.48 (1 H, dd, J = 12 Hz and 18 Hz, CHH), 4.43 (1 H, dd, J = 9 Hz and 12 Hz, CHH), 4.50 (1 H, s, OH).

A mixture of the above XIV ($R_1 = R_2 = 4$ -FPh, 1.68 g, 5.3 mmol), 2,2-dimethoxypropane (1.0 mL, 7.1 mmol), and *p*-TsOH (60 mg) in acetone (14 mL) was refluxed for 30 min. The reaction mixture was evaporated, diluted with 5% K₂CO₃, and extracted with benzene. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated to give XV ($R_1 = R_2 = 4$ -FPh, 1.87 g) as an oil. IR (film): 1680 cm⁻¹.

Novel Azolylpropanolones and Related Compounds

A mixture of the above product XV ($R_1 = R_2 = 4$ -FPh, 1.86 g, 5.8 mmol) in dry THF (30 mL) was added to methylmagnesium bromide (12 mL of 1 mmol/mL THF solution, 1.7 mmol), and the mixture was refluxed for 2 h. The reaction mixture was poured into ice water and extracted with CHCl₃. The organic layer was washed with H_2O and dried over Na_2SO_4 . After evaporation of organic solvent, the residue was chromatographed on a silica gel column. The fractions eluted with 2% MeOH/CHCl₃ were collected to obtain XVI as a mixture of diastereomers (ratio 2/1) $(R_1 = R_2 = 4$ -FPh, 1.85 g) as an oil. IR (film): 3450 cm⁻¹. ¹H NMR (CDCl₃): § 1.10 (3 H, s, CH₃) and 1.16 (3 H, s, CH₃) (ratio 2/1), 1.30 (3 H, s, CH₃) and 1.43 (3 H, s, CH₃) (ratio 2/1), 1.50 (3 H, s, CH₃) and 1.56 (3 H, s, CH₃) (ratio 2/1), 2.56 (3 H, s, OH) and 2.70 (3 H, s, OH) (ratio 2/1), 3.93 (1 H, d, J = 9 Hz, CHH) and 4.16 (1 H, d, J = 9 Hz, CHH) (ratio 2/1), 4.65 (1 H, d, J =9 Hz, CHH) and 4.46 (1 H, d, J = 9 Hz, CHH) (ratio 2/1).

A mixture of the above product XVI ($R_1 = R_2 = 4$ -FPh, 1.85 g) and 1 N HCl (2.5 mL) in MeOH (20 mL) was refluxed for 4 h. After evaporation of the solvent, the residue was diluted with H₂O and extracted with CHCl₃. The organic solvent was washed with H₂O, dried over Na₂SO₄, and evaporated to obtain XVII ($R_1 = R_2 = 4$ -FPh, 1.65 g) as an oil.

A mixture of the above product XVII (1.62 g, 5.5 mmol), Et₃N (3.8 mL, 27.5 mmol), and p-TsCl (1.15 g, 6 mmol) in CH₂Cl₂ (12 mL) was refluxed for 2 h. After evaporation of organic solvent, the residue was diluted with 5% K₂CO₃ and extracted with benzene. The organic layer was washed with H₂O and evaporated. The residue was chromatographed on a column of silica gel. The fractions eluted with CHCl₃ were collected to obtain XVIII (R₁ = R₂ = 4-FPh, 904 mg) as an oil. IR (film): 3460 cm⁻¹. ¹H NMR (CDCl₃): δ 1.55 (3 H, s, CH₃) and 1.60 (3 H, s, CH₃) (ratio 2/1), 2.63 (1 H, d, J = 5 Hz, CHH) and 2.73 (1 H, d, J = 5 Hz, CHH) (ratio 2/1), 3.53 (1 H, d, J = 5 Hz, CHH) and 3.21 (1 H, d, J = 5 Hz, CHH) (ratio 2/1).

A solution of the above product XVIII ($R_1 = R_2 = 4$ -FPh, 875 mg, 3.2 mmol) in DMF (10 mL) was added to a stirred mixture of 1,2,4-triazole (328 mg, 4.8 mmol) and NaH (60% dispersion in mineral oil, 38 mg, 1 mmol) in DMF (5 mL) and stirred at room temperature for 24 h. The mixture was poured into ice water and extracted with benzene. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated. The residue was chromatographed on a silica gel column. The fractions eluted with 50% AcOEt/benzene were collected to obtain IV ($R_1 = R_2 = 4$ -FPh, 160, erythro) (265 mg, mp 163–164 °C, from Et₂O/n-hexane, 24%). ¹H NMR (CDCl₃): δ 1.40 (3 H, s, CH₃), 2.95 (1 H, br s, OH), 4.05 (1 H, d, J = 15 Hz, CHH), 4.93 (1 H, d, J = 15 Hz, CHH), 4.84 (1 H, s, OH), 6.8–7.7 (10 H, m, triazole and aromatic). Anal. (C₁₈H₁₇F₂N₃O₂) C, H, F, N.

The fractions eluted with 50% AcOEt/benzene were collected to obtain IV (R₁ = R₂ = 4-FPh, 161, threo) (545 mg, mp 170–171 °C, from Et₂O/*n*-hexane, 50%). ¹H NMR (CDCl₃): δ 1.50 (3 H, s, CH₃), 3.53 (1 H, br s, OH), 4.52 (1 H, d, J = 15 Hz, CHH), 4.83 (1 H, d, J = 15 Hz, CH), 5.43 (1 H, s, OH), 6.7–7.68 (10 H, triazole and aromatic). Anal. (C₁₈H₁₇F₂N₃O₂) C, H, F, N.

1.1-Dimethyl-2-phenyl-3- $(1\tilde{H}-1,2,4$ -triazol-1-yl)propylene Glycol (198) (Method H). Compound XXI ($R_1 = R_3 = Me, R_2$ = Ph) was prepared according to the procedure of Rubottom et al.⁹ [bp 140 °C (25 mm) (lit. bp 119-121 °C (6 mm))]. To a solution of XXI ($R_1 = R_3 = Me$, $R_2 = Ph$) (500 mg, 2.1 mmol) and 1-[(trimethylsilyl)methyl]-1,2,4-triazole⁸ (394 mg, 2.5 mmol) in dry THF (4 mL) was added t-BuOK (285 mg, 2.5 mmol) under nitrogen atmosphere at -20 °C. After the mixture was stirred for 2 h, 6 N HCl (3 mL) was added and stirring continued for 15 h at room temperature. The reaction mixture was poured into aqueous NaHCO₃ and extracted with CH_2Cl_2 . The organic layer was washed with H_2O , dried over Na_2SO_4 , and evaporated. The residue was chromatographed on silica gel. The fractions eluted with 10% MeOH/CH₂Cl₂ gave IV ($R_1 = R_2 = Me, R_3 = Ph, 198$) [59 mg, mp 138.5–139.5 °C, from AcOEt/(*i*-Pr)₂O, 11%]. ¹H NMR (CDCl₃): δ 1.16 (3 H, s, Me), 1.29 (3 H, s, Me), 2.75 (1 H, s, OH), 4.72 (1 H, d, J = 15 Hz, CHH), 4.85 (1 H, s, OH), 4.90 (1 H, d)J = 15 Hz, CH=H), 7.06-7.82 (7 H, m, aromatic and triazole). Anal. (C13H17N3O2) C, H, N.

Fungistatic Activity. All the compounds were tested for fungistatic activity against *Candida albicans*, *Aspergillus fumigatus*, and *Trichophyton asteroides*. MIC values were determined by a microtiter dilution system²⁶ combined with PS microtiter plates (Labortechnik) and Micom autodiluter SPR2 (sanko), using final inocula²⁶ of 1×10^5 cells (yeast) or 1×10^5 conidia (mold and dermatophyte)/mL of Sabouraud's glucose broth.

Inhibitory Effect on Pseudomycelium Formation of Candida albicans. C. albicans KE-2 (an isolate from a clinical specimen) was prepared in its final inoculum to be 1×10^6 yeast cells/mL of EMEM supplemented with 20% calf serum. The test compounds were treated with the microtiter dilution system in the same way for evaluation of MICs. After incubation, morphological features of the fungal growth in each well were examined by a microscope following Giemsa staining (5% in phosphate buffer solution). Minimal effective concentration (MEC, μ g/mL) was defined as the lowest concentration of compound that prevented typical pseudomycelium formation.

Systemic Infections with Candida albicans in Mice. Jcl-ICR female mice, weighing 20–22 g, were used as experimental animals. Usually, 5×10^5 yeast cells of *C. albicans* KE-2 were injected into a tail vein to produce a subacute systemic model killing 100% of untreated animals within 10 days. For the preliminary therapeutic test, 50 mg/kg oral dose of each compound was administered to eight infected mice once daily for 5 consecutive days, from day 0 (immediately after the challenge) to day 4. Oral efficacy was evaluated by the survival rate of mice at day 15. Some of the active compounds selected from the preliminary test were administered in multiple doses ranging from 6.25 to 100 mg/kg (groups of 10 mice each). The ED₅₀ values were determined by the logit analysis method at day 15. Ketoconazole was administered in the same doses and its ED₅₀ compared with those of our selected compounds.

Superficial Infections with Trichophyton asteroides in Guinea Pigs. The compounds recognized to be effective against systemic candidiasis in mice were tested for their therapeutic effect on experimental dermatophytosis²⁷ in guinea pigs. Each 40 mg/kg oral dose of the compounds and ketoconazole was administered to four infected animals (having two lesion sites each) once daily for 10 consecutive days, from day 3 to day 12. Oral efficacies were made in terms of the rate of appearance of negative cultures from infected skin sections.

Acknowledgment. We thank N. Sunagawa, K. Kanazawa, and K. Ito for their excellent technical assistance.

```
Registry No. (±)-1, 107658-57-1; (±)-2, 107658-58-2; (±)-3,
107741-23-1; (\pm)-4, 107658-59-3; (\pm)-5, 107658-60-6; (\pm)-6,
107658-61-7; (\pm)-7, 107658-62-8; (\pm)-8, 107658-63-9; (\pm)-9,
107658-64-0; (\pm)-10, 107658-65-1; (\pm)-11, 107658-66-2; (\pm)-12,
107658-67-3; (\pm)-13, 107658-68-4; (\pm)-14, 107658-69-5; (\pm)-15,
107658-70-8; (\pm)-16, 107658-71-9; (\pm)-17, 107658-72-0; (\pm)-18,
107658-73-1; (\pm)-19, 107658-74-2; (\pm)-20, 107658-75-3; (\pm)-21,
107658-76-4; (\pm)-22, 107658-77-5; (\pm)-23, 107658-78-6; (\pm)-24,
107741-24-2; (±)-25, 107658-79-7; (±)-26, 107658-80-0; (±)-27,
107658-81-1; (\pm)-28, 107658-82-2; (\pm)-29, 107658-83-3; (\pm)-30,
107658-84-4; (\pm)-31, 107658-85-5; (\pm)-32, 107658-86-6; (\pm)-33,
107658-87-7; (\pm)-34, 107658-88-8; (\pm)-35, 107658-89-9; (\pm)-36,
107658-90-2; (\pm)-36 (free base), 107658-68-4; (\pm)-37, 107658-92-4;
(\pm)-37 (free base), 107658-91-3; (\pm)-38, 107658-93-5; (\pm)-40,
107658-94-6; (\pm)-41, 107658-95-7; (\pm)-42, 107658-96-8; (\pm)-43,
107658-97-9; (\pm)-44, 107658-98-0; (\pm)-45, 107659-00-7; (\pm)-45 (free
base), 107658-99-1; (±)-46, 107659-02-9; (±)-47, 107659-04-1; (±)-47
(free base), 107659-03-0; (±)-48, 107659-06-3; (±)-48 (free base),
107659-05-2; (\pm)-49, 107659-07-4; (\pm)-50, 107659-09-6; (\pm)-50 (free
base), 107659-08-5; (±)-51, 107659-11-0; (±)-51 (free base),
107659-10-9; (±)-52, 107659-13-2; (±)-52 (free base), 107659-12-1;
(\pm)-53, 107659-15-4; (\pm)-53 (free base), 107659-14-3; (\pm)-54,
107659-16-5; (\pm)-55, 107659-17-6; (\pm)-56, 107659-18-7; (\pm)-57,
107659-19-8; (\pm)-58, 107659-20-1; (\pm)-59, 107659-21-2; (\pm)-60,
107659-22-3; (\pm)-61, 107659-23-4; (\pm)-62, 107659-24-5; (\pm)-63,
107659-25-6; (\pm)-64, 107659-26-7; (\pm)-65, 107659-27-8; (\pm)-66,
107659-28-9; (\pm)-67, 107659-29-0; (\pm)-68, 107659-30-3; (\pm)-69,
107659-31-4; (\pm)-70, 107659-32-5; (\pm)-71, 107659-33-6; (\pm)-72,
```

⁽²⁶⁾ Totani, T.; Aono, K.; Yamamoto, K.; Tawara, K. J. Med. Chem. 1981, 24, 1492.

⁽²⁷⁾ Ogata, M.; Matsumoto, H.; Hamada, Y.; Takehara, M.; Tawara, K. J. Med. Chem. 1983, 26, 768.

107659-34-7; (±)-73, 107659-35-8; (±)-74, 107659-36-9; (±)-75, $107710-87-2; (\pm)-76, 107659-37-0; 77, 104941-05-1; (\pm)-78,$ 107659-38-1; 79, 107659-39-2; (\pm) -79-ol, 107680-48-8; 80, 107659-40-5; 81, 107659-41-6; 82, 107659-42-7; 83, 107741-25-3; 84, 107741-26-4; 85, 107659-43-8; (±)-86, 107659-44-9; (±)-87, $107659-45-0; (\pm)-88, 107741-27-5; (\pm)-89, 107741-28-6; (\pm)-90,$ 107659-46-1; (\pm) -91, 107659-47-2; (\pm) -92, 107659-48-3; (\pm) -93, 107659-49-4; (\pm) -94, 107659-50-7; (\pm) -95, 107659-51-8; (\pm) -96, 107659-52-9; (\pm) -97, 107659-53-0; (\pm) -98, 107659-54-1; (\pm) -99, 107659-55-2; (\pm)-100, 107659-56-3; (\pm)-101, 107659-57-4; (\pm)-102, $107659-58-5; (\pm)-103, 107659-59-6; (\pm)-104, 107659-60-9; (\pm)-106,$ 107659-61-0; (±)-107, 107659-62-1; (±)-108, 107741-29-7; (±)-109, $107741-30-0; (\pm)-110, 107768-18-3; (\pm)-111, 107659-63-2; (\pm)-112,$ 107659-65-4; (±)-113, 107659-65-4; (±)-114, 107659-66-5; (±)-115, $107659-68-7; (\pm)-116, 107659-68-7; (\pm)-117, 107659-69-8; (\pm)-118,$ 107659-70-1; (±)-119, 107659-71-2; (±)-120, 107659-72-3; (±)-121, 107659-73-4; (\pm)-122, 107659-74-5; (\pm)-123, 107659-75-6; (\pm)-124, $107741-31-1; (\pm)-125, 107659-76-7; (\pm)-126, 107659-77-8; (\pm)-127,$ $107659-78-9; (\pm)-128, 107659-79-0; (\pm)-130, 107742-31-4; (\pm)-131,$ $107659-80-3; (\pm)-132, 107659-81-4; (\pm)-133, 107659-82-5; (\pm)-134,$ $107659-83-6; (\pm)-135, 107659-84-7; (\pm)-136, 107659-85-8; (\pm)-137$ (isomer 1), 107741-32-2; (±)-137 (isomer 2), 107741-33-3; (±)-139 (isomer 1), 107741-34-4; (±)-139 (isomer 2), 107741-35-5; (±)-141 (isomer 1), 107741-36-6; (±)-141 (isomer 2), 107741-37-7; (±)-143 (isomer 1), 107741-38-8; (±)-143 (isomer 2), 107741-39-9; (±)-145 (isomer 1), 107741-40-2; (±)-145 (isomer 2), 107741-41-3; (±)-147, $107679-86-7; (\pm)-148, 107659-86-9; (\pm)-149, 107659-87-0; (\pm)-150,$ $107659-88-1; (\pm)-151, 107679-87-8; (\pm)-152, 107679-88-9; (\pm)-153,$ 107679-89-0; (±)-155, 107679-91-4; (±)-155 (free base), 107679-90-3; (\pm) -156, 107679-92-5; (\pm) -157, 107679-93-6; (\pm) -158, 107679-94-7; (\pm) -159, 107679-95-8; (\pm) -160, 107679-96-9; (\pm) -161, 107679-98-1; (\pm) -161 (free base), 107679-97-0; (\pm) -162, 107679-99-2; (\pm) -163,

 $107680-00-2; (\pm)-164, 107680-01-3; (\pm)-165, 107680-03-5; (\pm)-165$ (free base), 107680-02-4; (\pm)-166, 107710-88-3; (\pm)-167, 107680-04-6; (\pm) -168, 107680-05-7; (\pm) -169, 107680-06-8; (\pm) -170, $107680-07-9; (\pm)-171, 107680-08-0; (\pm)-172, 107680-09-1; (\pm)-173,$ 107680-10-4; (±)-174, 107680-11-5; (±)-175, 107680-12-6; (±)-176, $107680-13-7; (\pm)-177, 107680-14-8; (\pm)-178, 107711-01-3; (\pm)-179,$ $107680-15-9; (\pm)-180, 107680-16-0; (\pm)-181, 107680-17-1; (\pm)-182,$ 107680-18-2; (±)-183, 107680-19-3; (±)-184, 107680-20-6; (±)-185, $107680-21-7; (\pm)-186, 107680-22-8; (\pm)-187, 107680-23-9; (\pm)-188,$ $107680-24-0; (\pm)-189, 107680-25-1; (\pm)-190, 107680-26-2; (\pm)-191,$ 107680-27-3; (±)-192, 107680-28-4; (±)-193, 107711-02-4; (±)-194, $107680-29-5; (\pm)-195, 107680-30-8; (\pm)-196, 107680-31-9; (\pm)-197,$ 107680-32-0; (±)-198, 107680-33-1; V ($R_1 = R_2 = 2,4$ -dichlorophenyl), 107680-34-2; V ($R_1 = 2,4$ -dichlorphenyl, $R_2 = p$ -chlorophenyl), 94171-11-6; VI (R_1 = isopropyl, R_2 = 2,4-dichlorophenyl), 107711-03-5; VI (R_2 = R_2 = 2,4-dichlorophenyl), 104941-05-1; VII $(R_1 = isopropy), R_2 = 2,4$ -dichlorophenyl), 107680-35-3; VII $(R_1$ = R_2 = 4-chlorophenyl), 29425-79-4; VII (R_1 = R_2 = 2,4-di-chlorphenyl), 107680-36-4; (±)-X (R_1 = R_2 = 2,4-dichlorophenyl), 107711-04-6; (±)-X ($R_1 = R_2 = 4$ -FPh), 53458-16-5; (±)-XI (R_1 $\begin{array}{l} r_{1}=r_{2}=2,4-\text{dichlorophenyl}, R_{3}=H), 107680-37-5; \ (\pm)-XI \ (R_{1}=R_{2}=2,4-\text{dichlorophenyl}, R_{3}=p-\text{CH}_{3}\text{PhSO}_{2}), 107680-38-6; \ (\pm)-XII \ (R_{1}=4-\text{chlorophenyl}, R_{2}=2,4-\text{dichlorophenyl}), 107680-39-7; \end{array}$ ($\mathbf{R}_1 = 4$ -chlorophenyl, $\mathbf{R}_2 = 2,4$ -dichlorophenyl), 107680-39-7; (\pm)-XIII ($\mathbf{R}_1 = \mathbf{R}_2 = 2,4$ -dichlorophenyl, X = N), 107680-40-0; (\pm)-XV ($\mathbf{R}_1 = \mathbf{R}_2 = 4$ -FPh), 107680-41-1; (\pm)-XV ($\mathbf{R}_1 = \mathbf{R}_2 = 4$ -FPh), 107680-42-2; (\pm)-XVI ($\mathbf{R}_2 = \mathbf{R}_2 = 4$ -FPh, $\mathbf{R}_3 = C\mathbf{H}_3$) (isomer 1), 107680-43-3; (\pm)-XVI ($\mathbf{R}_1 = \mathbf{R}_2 = 4$ -FPh, $\mathbf{R}_3 = C\mathbf{H}_3$) (isomer 2), 107680-44-4; XVII ($\mathbf{R}_1 = \mathbf{R}_2 = 4$ -FPh, $\mathbf{R}_3 = C\mathbf{H}_3$) (isomer 2), 107680-44-4; XVII ($\mathbf{R}_1 = \mathbf{R}_2 = 4$ -FPh, $\mathbf{R}_3 = C\mathbf{H}_3$), 107680-44-4; XVII ($\mathbf{R}_1 = \mathbf{R}_2 = 4$ -FPh, $\mathbf{R}_3 = C\mathbf{H}_3$), 107680-45-5; XVIII ($R_1 = R_2 = 4$ -FPh, $\tilde{R}_3 = CH_3$), 107680-46-6; XXI ($R_1 = R_3 = CH_3$, $\hat{R}_2 = \hat{P}h$), 55418-35-4; 2,4-dichlorobenzyl isopropyl ketone, 107680-47-7; paraformaldehyde, 30525-89-4; 1-[(trimethylsilyl)methyl]-1,2,4-triazole, 103817-03-4.

Synthesis and Structure–Activity Studies of Corticosteroid 17-Heterocyclic Aromatic Esters. 1. 9α , 11β -Dichloro Series

Elliot L. Shapiro,* Margaret J. Gentles, Robert L. Tiberi, Thomas L. Popper,* Joseph Berkenkopf, Barry Lutsky, and Arthur S. Watnick

Pharmaceutical Research Division, Schering-Plough Corporation, Bloomfield, New Jersey 07003. Received September 18, 1986

The preparation and topical antiinflammatory potencies of a series of 9α ,11 β -dichloro-16-methyl corticosteroid 17-heteroaryl carboxylates are described. The 17-acyl group was introduced to the 9α ,11 β -dichloro 21-acetate by direct acylation with the appropriate heteroaryl carbonyl chloride in the presence of 4-(dimethylamino)pyridine. Alternatively, the 21-functionalized 17-hydroxy $\Delta^{9(11)}$ compound was acylated at 17, followed by C-ring chlorination. The most extensively studied heterocyclic acyl functionality was the 2-furoyl, but the 3-furoyl, and 2- and 3-thenoyl derivatives were also investigated. Antiinflammatory potencies were measured in mice by a 5-day modification of the Tonelli croton oil ear assay. The most potent topical antiinflammatory compounds were 17-heteroaryl esters in the 16α -methyl series where the 21-substituent was chloro or fluoro. Thus **2p** [21-chloro 17-(2'-furoate)] was 8 times as potent as betamethasone valerate, while **2s** [21-fluoro 17-(2'-furoate)], **2r** [21-chloro 17-(2'-thenoate)], and **2v** [6 α -fluoro 21-chloro 17-(2'-furoate)] were 3 times as potent as betamethasone valerate.

This paper describes a new class of corticosteroids with high topical antiinflammatory potencies.¹ Some of the compounds described in this paper have shown higher topical antiinflammatory potencies than any other topical corticosteroid tested in our laboratories.

This class of corticosteroids consists of aromatic heterocyclic ester derivatives of the 17-hydroxy function of the side chain. These include furoyl, thenoyl, and pyrrolylcarbonyl esters. The corticosteroids reported here are 9α ,11 β -dichloro compounds, while the 11-oxygenated analogues will be described elsewhere.

Corticosteroid 17-benzoates have demonstrated substantial topical antiinflammatory potency.^{2.3} In particular, betamethasone 17-benzoate (1) has been used in clinical practice for a long time. We anticipated that similar esters

of furan-, thiophene-, and pyrrolecarboxylic acids would exhibit topical antiinflammatory activity. Accordingly, a variety of these esters were synthesized. The results of

Shapiro, E. L. U. S. Patent 4472393, Sept. 18, 1984; Chem. Abstr. 1985, 102, 95905k.

⁽²⁾ DiPasquale, G.; Rassaert, C. L.; McDougall, E. Steroids 1970, 16, 679.

⁽³⁾ Lutsky, B. N.; Berkenkopf, J.; Fernandez, X.; Monahan, M.; Shue, H. J.; Tiberi, R. L.; Green, M. J. Arzneim.-Forsch. 1979, 29, 1662.