Kurzmitteilungen:

Synthesis of Some Pyrido[2,3-d]pyrimidine and Pyrido[3,2-d]pyrimidine Derivatives

Synthese einiger Pyrido[2,3-d]pyrimidin- und Pyrido[3,2-d]pyrimidin-Derivate

Jadwiga Soloducho

Technical University of Wroclaw, Institute of Organic and Physical Chemistry, W. Wyspianskiego 27, 50-370 Wroclaw, Poland

Received November 13, 1989

As a continuation of our screening programme seeking new heterocyclic compounds of potential hypotensiv activity derivatives of pyrido[2,3-d]pyrimidine were synthesized^{1a-c)}

Mannich reaction of the appropriate aromatic amines with formaline was unsatisfactory and did not result in the desired derivatives. Moreover these derivatives are susceptible to hydrolysis and are unsuitable as orally given drugs. In order to obtain the title compounds the known reactivity of the 3,4-dihydropyrido[2,3-d]pyrimidine-4-one carbonyl moiety^{1b)} was used. So compound 1 was reacted with POCl₃^{2b)} yielding 4-chloro-pyrido[2,3-d]pyrimidine (2), which was treated with various amines yielding the corresponding aminoderivatives **4-6**, analogously to the similar reaction of thiazolopyrimidine found by *Tominaga* et al^{2b)}. Compounds **8-13** were obtained by cyclization of 3-aminopicolinic acid (7) with isothiocyanates or isocyanates, according to *Lakhan* et al.^{2a)}, who investigated a similar reaction of the quinazoline system.

The structures of compounds 2-6 and 8-13 (Schemes 1,2) were veryfied by their elemental analyses (Tab. 1) and by ¹H-NMR spectra (Tab. 2).

Experimental Part

¹H-NMR spectra: TESLA 80 MHz BS 487C.

4-Chloropyrido[2,3-d] pyrimidine (2)

 $10 g (0.67 \text{ mole}) \text{ of } 3,4-dihydropyrido[2,3-d]pyrimidine-4-one^{2b)} and 100 ml of POCl₃ were heated at 100°C for 3 h after solubilization of the$

substrate. Excess of POCl₃ was removed and the residue was poured into ice and neutralized with K_2CO_3 solution. The product was extracted into chloroform. Removal of the solvent led to crystals: 6g (53%) of 2, m.p. 240°C.

4-Morpholinopyrido[2,3-d]pyrimidine (3)

1 g (6 mmole) of 2 and 2.4 g (0.027 mole) of morpholine were heated at 130°C for 2 h. After cooling the resulting precipitate was collected, washed with acetone and recrystallized from methanol/benzene yielding 1.09 g (84%) of compound 3, m.p. 207-209°C.

4-Piperidinopyrido[2,3-d]pyrimidine (4)

1 g (6 mmole) of 2 and 2.4 g (0.028 mole) of piperidine were reacted and worked up as described for 3, m.p. 212-213 °C (benzene/methanol), yielding 0.93 g (72%) of 4.

Comp.	M.p. °C Solvent*	Yield %	Formula m.wt.	Analyses, 发			L	Calcd. found	
				С	Н	N	S	C1	
2	240	53	7H4N3Cl 165.6	50.8 50.7	2.43 2.3	25.4 25.1		21.4 20.9	
3	207-209 МеОН/С6Н6	83	C11H12N4O 216.2	61.1 60.8	5.59 5.53	25.9 25.8			
<u>4</u>	212-213 МеОН/С6Н6	72	C12H14N4 214.3	67.3 67.2	6.58 6.5	26.2 26.0			
5	359-360 MeOH	72	C13H9N4C1 256.7	60.8 60.7	3.53 3.45	21.8 21.6			
<u>6</u>	187-188 MeOH	76	C9H10N4 174.2	62.0 61.0	5.78 5.65	32.2 32.1			
<u>8</u>	283-285 EtOH	48	C 1 1H9N 30S 231 . 3	57.1 57.0	3.92 3.90	18.2 18.1	13.9 13.8		
<u>9</u>	305 MeOH/AcMe	83	C 9H 9N 3OS 207 . 3	52.1 52.0	4.37 4.2	20.3 20.1	15.5 15.3		
<u>10</u>	330 MeOH	75	C 17H 11N3O2 289.3	70.6 70.4	3.83 3.65	14.5 14.4			
<u>11</u>	228-230 MeOH/H2O	82	C13H14N3O2 244.3	63.9 63.8	5.77 5.65	17.2 17.1			
<u>12</u>	255-256 MeOH	85	C11H13N3O2 219.2	60.3 60.2	5.97 5.83	19.2 19.1			
<u>13</u>	213 EtOH	81	С13НвN302С1 233.7	57.0 56.9	2.94 2.77	15.3 15.2		13.0 12.8	

* - solvents for recrystallization

Table 2: 80 MHz ¹H-NMR spectra of derivatives of pyrido[2,3-d]pyrimidines 2-6 and pyrido[3,2-d]pyrimidines 8-13

Comp.	Chemical shifts (DMSO)					
2	5.96-7.05 (m, 4H- aromat. H)					
3	1.93-2.06 (m, 2 NCH ₂ , 4H - morpholine H); 2.72-2.85 (m, 2 OCH ₂ , 4H - morpholine H); 5.97-6.37 (m, 4H - aromat. H)					
4	2.15-2.50 (m, 10H - piperidine H); 5.82-6.50 (m, 4H - aromat. H)					
5	5.7-5.98 (m, 4H - aromat. H); 6.2-6.51 (m, 4H - aromat. H)					
6	2.9 (s, 6H - N(CH ₃) ₂); 5.48-7.4 (m, 4H - aromat. H)					
8	3.73 (s, 1H - NH); 7.2-7.35 (m, 5H - aromat. H); 7.5-7.75 (m, 3H- aromat. H)					
9	1.40 (t, 3H - CH ₃ , J = 7 Hz); 4.64 (q, 2H - CH ₂ , J = 7.2 Hz); 8.40-9.16 (m, 3H - aromat. H) ^{a)}					
10	7.8-7.96 (m, 7H - naphthyl H); 8.18-8.23 (m, 3H - aromat. H)					
11	1.92-2.40 (m, 11H - cyclohexyl H); 7.1-7.3 (m, 3H- aromat. H)					
12	1.02-1.97 (m, 7H, CH ₂ -CH ₂ -CH ₃); 3.86-4.11 (m, 2H - NCH ₂); 7.68-7.73 (m, 1H - aromat. H); 8.55-8.66 (m, 2H - aromat. H)					
13	3.22 (s, 1H - NH), 7.0-7.22 (m, 4H - aromat. H); 7.5-7.8 (m, 3H - aromat. H)					

a) in CF₃COOD

4-p-Chloro	phenylamino	pyrido[2.3-d	Ipyrimidine	(5)
				· · ·

See above; 72%, m.p. 359-360°C (methanol).

4-Dimethylaminopyrido[2,3-d]pyrimidine (6)

See above; 76%, m.p. 187-188°C (methanol).

3-Phenyl-1,2,3,4-tetrahydropyrido[3,2-d]pyrimidin-4-one-2-thione (8)

To the solution of 1.0 g (7.2 mmole) 7 in 50 ml of N,N-dimethylformamide, 1.1 g (8.1 mmole) of phenyl isothiocyanate were added dropwise. The mixture was refluxed for 24 h. After cooling, the solvent was removed in vacuo and the product was filtered off and sublimed: 0.8 g (48%) of 8, m.p. 283-285°C.

3-Ethyl-1,2,3,4-tetrahydropyrido[3,2-d]pyrimidin-4-one-2-thione (9)

From 1.0 g 7 and 0.7 g ethyl isothiocyanate as described above. Yield 1.25 g (83%), m.p. 305 °C (methanol/acetone 2:1).

3-Naphthyl(1)-1,2,3,4-tetrahydropyrido[3,2-d]pyrimidin-2,4-dione (10)

From 1.0 g 7 and 1.35 g 2-naphthyl isocyanate as described above. Yield 0.5 g (75%); after sublimation at 305°C m.p. 330°C.

Pyrido[2,3-d]pyrimidine und Pyrido[3,2-d]pyrimidine Derivatives

3-Cyclohexyl-1,2,3,4-tetrahydropyrido[3,2-d]pyrimidin-2,4-dione (11)

From 1.0 g 7 and 1.1 g cyclohexyl isocyanate as described above. Yield 1.4 g (82%), m.p. 228-230 $^{\circ}$ C (30% aqueous methanol).

3-Butyl-1,2,3,4-tetrahydropyrido[3,2-d]pyrimidin-2,4-dione (12)

From 1.0 g 7 and 0.8 g n-butyl isocyanate as described above. Yield 1.35 g (85%), m.p. 255-256°C (methanol).

3-p-Chlorophenyl-1,2,3,4-tetrahydropyrido[3,2-d]pyrimidin-2,4-dione (13)

From 1.0 g 7 and 1.23 g 4-chlorophenyl isocyanate as described above. 1.6 g colorless crystals (81%), m.p. 213°C (methanol).

References

a L. Kuczyński, A. Mrozikiewicz, and J. Soloducho, Pol. Pat. 127,813
Cl. C07D487/04, Oct. 10, 1984; C.A. 106, 33132c (1987);
b J. Soloducho, A. Mrozikiewicz, T. Bobkiewicz - Kozlowska, A. Olejnik, and A. Pieczynska, Pol. J. Pharmacol. Pharm. 37, 541 (1985);
C.A. 104, 141711k (1986);

c J. Soloducho, J. Prakt. Chem. 331, 503 (1988).

a R. Lakham and P. Singh, Arch. Pharm. (Weinheim) 318, 228 (1985);
b Y. Tominaga, S. Sakai, and S. Kohra, Chem. Pharm. Bull. 33, 962 (1985).

[KPh522]