

Tetrahedron Letters 40 (1999) 9301-9303

TETRAHEDRON LETTERS

A new and general synthesis of chiral β -ketosulfoxides by reaction of (+)-(*R*)-methyl *p*-tolyl sulfoxide with nitriles

Robert Vleggaar * and Jacob G. Zeevaart

Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa

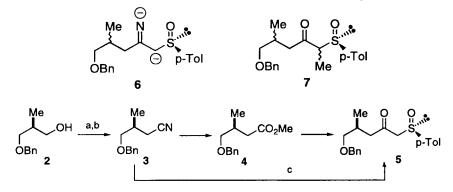
Received 3 September 1999; accepted 13 October 1999

Abstract

The nitrile functional group is efficiently transformed into the β -ketosulfoxide moiety by reaction with the anion formed from (+)-(R)-methyl p-tolyl sulfoxide and aqueous acidic work-up of the reaction. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: nitriles; chiral sulfoxides; chiral β -ketosulfoxides; carbon-carbon bond formation.

Chiral β -ketosulfoxides have found wide application over the years in the asymmetric synthesis of natural products.^{1,2} The synthesis of a great variety of enantiomerically pure acyclic β -ketosulfoxides is based³ on the reaction of esters with the α -sulfinyl anion derived from a chiral sulfoxide such as (+)-(*R*)-methyl *p*-tolyl sulfoxide 1.⁴ In our synthetic studies⁵ on the C₂₀ backbone of the fumonisins, mycotoxins produced by cultures of *Fusarium moniliforme*,⁶ we developed a strategy for the synthesis of the substituted *anti* 1-methyl-3-hydroxy group motif present in these compounds, based^{1,7} on the stereoselective reduction of a chiral β -ketosulfoxide intermediate.



The strategy is outlined in Scheme 1 and involves a one-carbon chain extension of the protected alcohol 2 via the O-tosylate derivative to the nitrile 3. Base hydrolysis of the nitrile 3 followed by esterification of the formed acid gives the ester 4 which is converted by established procedures,⁸ to the β -ketosulfoxide 5 upon treatment with 2 equivalents of the α -anion derived from the chiral sulfoxide 1.^{9,10} In this letter we report that the synthetic sequence can be efficiently shortened by two steps through use of the nitrile 3 to prepare the β -ketosulfoxide 5. The rationale for this reaction is that nucleophilic attack of the α -sulfinyl anion on the carbon atom of the nitrile group of 3 leads to carbon–carbon bond formation and an

* Corresponding author. Tel: +27 12 420-3095; fax: +27 12 362-5297; e-mail: vleggaar@scientia.up.ac.za

0040-4039/99/\$ - see front matter 0 1999 Elsevier Science Ltd. All rights reserved. P11: S0040-4039(99)01951-6

iminide intermediate 6. Aqueous acidic work-up generates an imine which in turn is hydrolysed under the conditions to the β -ketosulfoxide 5. The method was investigated using a variety of nitrile compounds (see Table 1) and is illustrated in Scheme 1 for the synthetic sequence using *rac*-2.¹¹

Scheme 1. Reagents and conditions (racemic compounds): (a) TsCl, DMAP, pyridine, CH_2Cl_2 , 0°C, 5 h, 90%; (b) NaCN, DMF, 90°C, 16 h, 92%; (c) LDA, 1, 0°C \rightarrow rt, 1 h, 85%

Table 1 Data for the β -ketosulfoxides **10a**-g prepared from the nitriles **9a**-g

R──≡N	1 (2 eq)	<u> </u>	
	LDA (2 ed	q) R ~ ~ 0	p-Tol
9	10		
β-Ketosulfoxide 10	Yield	m.p.	[α] D
		(Lit. m.p.)	(Lit. [α] _D)
a R = Me	78%	34–36°C	$+247.5 (c 0.51)^{a}$
		$(35-36^{\circ}C)^{12}$	$(+ 246.9 (c 0.55))^{a,12}$
$\mathbf{b} \mathbf{R} = \mathbf{E} \mathbf{t}$	74%	68–69°C	$+259.0(c\ 0.62)^{a}$
		(69–70°C) ¹³	$(+260.3 (c 1.0))^{a,13,14}$
$\mathbf{c} \mathbf{R} = n - \mathbf{P} \mathbf{r}$	80%	58–59°C	$+264.0(c 1.47)^{a}$
		(58–59°C) ¹²	(+ 265.0) ^{a,14,15}
$\mathbf{d} \mathbf{R} = cyclo-Hexyl$	78%	110-112°C	$+ 191.4 (c 0.51)^{b}$
		(—)	()
$\mathbf{e} \mathbf{R} = \mathbf{P}\mathbf{h}$	96%	88-89°C	$+ 185.7 (c 0.95)^{b}$
		(82-83.5°C) ¹³	$(+180.9 (c 1.0))^{b,13}$
f R = Me	85%	oil	
BnO			(—)
g R =	77%	oil	+167.1 (c 1.2) ^b
Me			(—)
момо	ž		

^a In acetone.

^b In chloroform.

The reaction conditions were established using the nitrile, *rac-3*. The formation of the dianion intermediate 6 was confirmed by the isolation of 7 (a mixture of 4 diastereomers) (10% yield) and 8 when the reaction at -40° C was quenched with an excess of MeI. It must be pointed out that the reaction is sensitive to the acidity of the α -protons of the nitrile substrate. The pK_a of the chiral sulfoxide 1 is ca. 35 whereas the nitriles **9a-g** is ca. 31. In the case of phenylacetonitrile (pK_a ca. 22) the reaction failed and an intractable mixture formed.

A typical procedure for the transformation of the nitrile functionality to a β -ketosulfoxide moiety is as follows: *n*-Butyl lithium (1.60 M in hexane, 6.9 ml, 11.0 mmol) was added by syringe to a solution of diisopropylamine (1.11 g, 11.0 mmol) in dry THF (20 ml) at -40°C under a nitrogen atmosphere. After 30 min a solution of the sulfoxide 1 (1.54 g, 10.0 mmol) in dry THF (10 ml) was added to the solution at -40°C by syringe. After 30 min the reaction mixture was allowed to warm to 0°C and the nitrile 3 (0.95 g, 5.0 mmol) in dry THF was added by syringe and the reaction allowed to reach room temperature. After 1 h the reaction was quenched by addition of water (1 ml), the THF–hexane solvent evaporated and the residue diluted with water (20 ml). The aqueous solution was acidified (pH 2, 6 M HCl) and extracted with CH₂Cl₂. The product mixture was purified by column chromatography on silica gel using EtOAc:hexane (1:1) as eluent to give the β -ketosulfoxide 5 (1.46 g, 85%).

Acknowledgements

Financial support from the University of Pretoria and the National Research Foundation, Pretoria as well as AECI, Modderfontein (for J.G.Z.) is gratefully acknowledged.

References

- 1. Allin, S. M.; Shuttleworth, S. J.; Page, P. C. B. In Organosulfur Chemistry. Vol. 2: Synthetic and Stereochemical Aspects; Page, P., Ed.; Academic Press: London, 1998; pp. 97–155.
- 2. Carreño, M. C. Chem. Rev. 1995, 95, 1717.
- (a) Kunieda, N.; Nokami, J.; Kinoshita, M. Chem. Lett. 1974, 369. (b) Solladié, G.; Carreño, M. C. In Organosulfur Chemistry, Vol. 1: Synthetic Aspects; Page, P., Ed.; Academic Press: London, 1995; pp. 1–47.
- 4. Solladié, G. Synthesis 1981, 185.
- 5. Zeevaart, J. G. M.Sc. Thesis, University of Pretoria, 1997.
- 6. (a) Bezuidenhout, S. C.; Gelderblom, W. C. A.; Gorst-Allman, C. P.; Horak, R. M.; Marasas, W. F. O.; Spiteller, G.; Vleggaar, R. J. Chem. Soc., Chem. Commun. 1988, 743. (b) Boer, A. M.Sc. Thesis, University of Pretoria, 1992.
- 7. Solladié, G.; Greck, C.; Demailly, G.; Solladié-Cavallo, A. Tetrahedron Lett. 1982, 23, 5047.
- 8. Solladié, G.; Huser, N. Rec. Trav. Chim. Pays-Bas 1995, 114, 153.
- 9. Compound 1 was prepared by the procedure as reported in Ref. 4 and had mp 74.5–75.5°C and $[\alpha]_D$ +192 (c 4.0, CHCl₃) in agreement with published values.
- 10. Satisfactory ¹H and ¹³C NMR, and HR FAB-MS data were obtained for all compounds.
- 11. rac-2 was prepared from (2RS)-2-methyl-1,3-propanediol in two steps: (a) PhCHO, TsOH, benzene (Dean–Starke), 98%;
 (b) LiAlH₄, AlCl₃, Et₂O, 92%.
- 12. Schneider, F.; Simon, R. Synthesis 1986, 582.
- 13. Annunziata, R.; Cinquini, M.; Cozzi, F. J. Chem. Soc., Perkin Trans. 1 1979, 1687.
- 14. Banfi, L.; Colombo, L.; Gennari, C.; Annunziata, R.; Cozzi, F. Synthesis 1982, 829.
- 15. Kunieda, N.; Motoki, H.; Kinishita, N. Chem. Lett. 1978, 713.