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Abstract: Addition of lithiated methoxyallene 2 to imines provided
the expected allenyl amines in good yield. These could be cyclized
with base or with silver nitrate to a variety of 2,5-dihydropyrrole de-
rivatives. Selected examples describe their conversion to pyrroli-
din-3-ones or 3-methoxypyrroles. Most importantly, this [3+2]
cyclization  method  could also be applied to the synthesis of 2,5-
disubstituted derivatives such as 26-28 and also to the preparation
of the enantiopure compound 23.
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Syntheses of pyrrole derivatives are of great importance
due to their presence in numerous biologically active
compounds.2 Therefore, many routes leading to this class
of heterocycles have been developed.3 In addition, certain
electron-rich pyrrole derivatives are of interest because of
their redox behaviour and their ability to provide polypyr-
roles.4 Lithiated methoxyallene 2 is an extremely valuable
building block for the synthesis of oxygen and nitrogen
heterocycles.5 With carbonyl compounds it provides furan
derivatives after cyclization,6 whereas its reaction with ni-
trones leads to 1,2-oxazines.7 Surprisingly, no additions to
simple imines have been reported,8 which should furnish
pyrrole derivatives. A recent publication describing reac-
tions of 2 with SAMP-hydrazones providing enantiopure
3-methoxy-2,5-dihydropyrrole derivatives9 prompts us to
report our results with various imines.10

Lithiated methoxyallene 2 was generated by the standard
procedure employing n-butyllithium at -40 °C, and after
addition of N-tosylimine 111 followed by aqueous workup
and purification the primary adduct 3 was obtained in
67% yield (Scheme 1). This intermediate could be hydro-
lyzed with acid to afford an a,ß-unsaturated ketone10 or,
more interestingly, converted into a-amino ester 4 by ozo-
nolysis.12

In analogy to the behaviour of the carbonyl adducts6 cy-
clization of 3 employing 0.15 equivalents of potassium
tert-butoxide in DMSO furnished the desired pyrrole de-
rivative 6 in 84% yield. Since an excess of base converts
6 into 5, the isomerization 3Æ6 is better performed by us-
ing of 0.27 equivalents of silver nitrate in acetone13 which
gave a yield of 93%.14 Cyclization of 3 and elimination of
toluene sulfinate from intermediate 6 proceeded by use of
1.5 equivalents of KOtBu and furnished 3-methoxy-2-
phenylpyrrole (5) in 71% yield. This compound was also
formed by heating the primarily obtained lithium salt of 3

in DMSO. An obvious subsequent transformation of 2,5-
dihydropyrrole derivative 6 is the hydrolysis of its enol
ether moiety; treatment of 6 with 2N aqueous sulfuric acid
provided pyrrolidinone 7 in 96% yield. Analogous exper-
iments were successfully performed with N-tosyl imines
derived from pivalaldehyde and cinnamyl aldehyde. Hav-
ing established that highly reactive imines such as 1 be-
have similarly to carbonyl compounds, we studied less
reactive N-aryl and N-alkyl imines. Scheme 2 presents se-
lected examples of the additions of 2 to readily available
imines 8, 10, 12, 15, and 17. Cyclization either with silver
nitrate or under basic conditions cleanly afforded the ex-
pected pyrrole derivatives 9, 11, 16 and 18 in good to ex-
cellent overall yields, whereas tricyclic compound 13 was
accompanied by the dehydrogenated product 14. Of par-
ticular interest is the smooth formation of double adducts
such as 18 (1:1 mixture of diastereomers) since com-
pounds of this type may be valuable components of su-
pramolecular systems.

Scheme 1
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Scheme 2

We also started to prepare enantiopure compounds fol-
lowing this approach (Scheme 3). A phenethyl group at
the imine nitrogen present in 19 induced almost no diaste-
reomeric excess as demonstrated by formation of 20 (ratio
of diastereomers 56:44). However, (R)-glyceraldehyde
derived imine 2115 reacted with lithiated methoxyallene 2
with excellent diastereofacial selectivity. Only syn com-
pounds 22 and 23 were formed as a 1:1 mixture.16 The cy-
clization was completed with silver nitrate to provide
enantiopure 2,5-dihydropyrrole derivative 23 in 57%
yield. The syn-configuration was anticipated according to
literature precedence17 and proven by comparison with a
compound obtained by an independent route;18 in addi-
tion, an X-ray analysis of the analog N-phenyl derivative
unequivocally demonstrated the relative configuration of
these compounds.

Initial experiments were devoted to the preparation of 5-
alkyl substituted pyrrole derivatives using this route.
Thus, 1-methoxy-1,2-heptadiene could successfully be
employed for this purpose.19 However, it turned out that 1-
methoxy-2-heptyne (24)20 allows an even more efficient
approach (Scheme 4). Its deprotonation and treatment
with KOtBu/HMPA followed by addition of N-tosyl imi-
ne 1 provided allene 25 as a mixture of diastereomers
(1:1) in 50% yield. The base catalyzed cyclization of 25a/
25b afforded a mixture of 2,5-dihydropyrrole derivatives
28a (47%) and 28b (10%); a small amount of 25b was re-
isolated.21 This experiment demonstrates that pyrrole for-
mation is not hampered by the terminal substituent at the
methoxyallene moiety although it proceeds more slowly.

Diastereomer 28a was smoothly transformed into 2,5-cis-
substituted pyrrolidin-3-one 26 by acid treatment, or into
5-butyl-3-methoxy-2-phenylpyrrole (27) by base promot-
ed elimination. These high yielding processes demon-
strate that the cyclizations of allenyl amines22 as described
in this letter should allow the preparation of a variety of
highly substituted and functionalized pyrrole derivatives.
First examples of this [3+2] cyclization method also re-
veal that control of relative and absolute configuration is
possible.

Scheme 3
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