

Tetrahedron Letters 40 (1999) 9029-9031

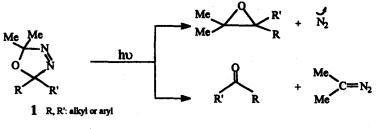
TETRAHEDRON LETTERS

Synthesis and photolysis behaviour of 2-(Δ^1 -pyrazolinyl)- $\Delta^3(1,3,4)$ oxadiazolines. Application to the synthesis of gem-dimethylcyclopropane ketone

Jalel Lachheb,^a Marie-Thérèse Martin^b and Abdel-Kader Khemiss^{a,*}

*Laboratoir de Synthèse Hétérocyclique, Photochimie et Complexition, Faculté des Sciences de Monastir, 5000 Monastir, Tunisia ^bInstitut de Chimie des Substances Naturelles, C.N.R.S, 91190 Gif-sur-Yvette, France

Received 26 September 1999; accepted 7 October 1999


Abstract

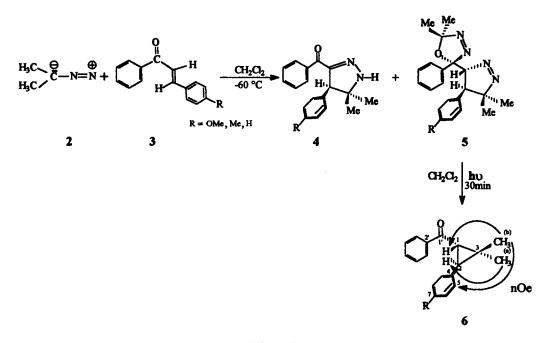
The photolysis of 2-(Δ^1 -pyrazolinyl)- $\Delta^3(1,3,4)$ oxadiazoline 5 led to exclusive formation of gemdimethylcyclopropane ketone 6. © 1999 Published by Elsevier Science Ltd. All rights reserved.

Keywords: cycloaddition; pyrazoline; oxadiazoline; irradiation.

The gem-dimethylcyclopropane unit is a key structural feature of many valuable natural products^{1,2} such as phorbol, aristolone and chrysanthemic acid.

So far, access to this element have relied primarily upon photolysis of Δ^1 -pyrazoline. Thus, Van Auken and Rinehart³ have shown that the stereochemistry of the small cycles thus obtained in this way is, in general, the same as that of starting enones. Thus, photolysis of 5,5-dimethyl- $\Delta^3(1,3,4)$ oxadiazoline 1 can lead to the formation of an oxirane and/or to recovered starting enone along with the reacting 2-diazopropane⁴⁻⁶ (Scheme 1).

Scheme 1.


Corresponding author. Fax: 216 3 500 278

^{0040-4039/99/\$ -} see front matter @ 1999 Published by Elsevier Science Ltd. All rights reserved. PII: S0040-4039(99)01920-6

Previously, the photolysis of Δ^3 -(1,3,4) oxadiazolines and Δ^1 -pyrazoline have been the subject of separate studies.^{3,5,6}

We wish to report herein on our own work on the photolysis of compound 5 whose structure comprise both the oxadiazoline and pyrazoline moieties.

In addition to the expected cycloaddition adduct 4, compound 5 was also obtained in 20% yield upon reaction of a 2-diazopropane $(DAP)^4$ 2 and an α,β -unsatured ketone 3 at low temperature $(-60^{\circ}C)^{7-9}$ (Scheme 2).

Scheme 2.

Irradiation of 5 in dry dichloromethane at room temperature led to exclusive formation of gemdimethylcyclopropane 6^{10} (Scheme 2), whose structure was further secured through a detailed ¹³C NMR study of the photolysis products. Thus, a signal at 197.5 ppm¹⁰ was attributed to the aromatic carbonyl group C_{1'}. The gem-dimethylcyclopropane structure was deduced from an analysis of HMBC spectra which indicate that the methyl protons H_a and H_b correlate with carbon atoms C₁, C₂, C₃ via ²J and ³J coupling constants, whereas protons H₁ and H₂ exhibit correlations with carbons C₂, C₃ and C₁, C₃, C₄, respectively. The relative stereochemistry of compound 6 was established through an analysis of its NOESY spectrum.

The *trans* relationship between protons H_1 and H_2 was deduced from the observation of an NOE effect between H_1 and the methyl protons H_b , while H_2 correlates with the methyl protons H_a . In addition, the NOE effect between the aromatic proton H_5 and the methyl group H_b was further evidence of the spatial structure of compound **6** (Scheme 2).

In conclusion, this study demonstrates that the *gem*-dimethylcyclopropanes subunit which is often incorporated into biologically important natural products can be easily obtained in a two-step sequence from α,β -unsaturated ketones. Additionally, the present work provides further evidence that the key step in this transformation i.e, the photolysis of 2-(Δ^1 -pyrazolinyl)- $\Delta^3(1,3,4)$ oxadiazolines intermediates, does proceed with retention of configuration.

9030

Acknowledgements

We wish to thank Dr. Olivier Laprevote for help in mass spectroscopy analysis.

References

- 1. Rigby, J. H.; Kierkus, P. Ch. J. Am. Chem. Soc. 1989, 111, 4125-4126.
- 2. Zhu, Y. F.; Yamazaki, T.; Goodman, M. J. Org. Chem. 1992, 57, 1074-1081.
- 3. Van Auken, T. V.; Rinehart Jr., K. L. J. Am. Chem. Soc. 1962, 84, 3736.
- 4. Standinger, H.; Gaule, A. Ber. 1916, 49, 1897.
- 5. Majchrzak, M. W.; Békhazi, M.; Tse-Sheepy, I.; Warkentin, J. J. Org. Chem. 1989, 54, 1842-1845.
- 6. Adam, W.; Finzel, R. Tetrahedron Lett. 1990, 31, 863-866.
- 7. Martin, M. T.; Gharbi, R.; Khemiss, A.; Mighri, Z. Magn. Reson. Chem. 1997, 35.
- 8. Gharbi, R.; Haddad, A.; Mighri, Z.; Khemiss, A. J. Soc. Chim. Tunisie. 1997, IV 2, 149-156.
- Preparation of 5a: small fractions of 2-diazopropane (10 ml, 2.8 M etheral solution) were added gradually to a solution of enone 3a (2 g, 1.5 mmol) in dry dichloromethane (100 ml) at -60°. After enone 3a had totally disappeared, a new product 5a was noticed beside Δ²-pyazoline 4a. Products 4a and 5a were separated by column chromatography (SiO₂: hexane/ethylacetate 8:2). Product 5a crystallized from CH₂Cl₂-hexane (20%) mp 110°C. IR [v cm⁻¹] (KBr): 950-1080; 1520; 2940. ¹H NMR (300 MHz, CDCl₃): δ 0.79 (s, 3H, CH_{3(a)}); 1.36 (s, 3H, CH_{3(c),(d)}); 1.51 (s, 3H, CH_{3(b)}); 1.58 (s, 3H, CH_{3(c),(d)}); 3.69 (s, 3H, OCH₃); 5.62 (d, 1H, H₃'); 2.68 (d, 1H, H₄') J_{H3'-H4'}=9.8 Hz; 6.53 (d, 2H, H_{8',10'}); 6.61 (d, 2H, δH_{7',11'}) AA'BB'; 7.05-7.46 (m, 5H, H_{phén}). ¹³C NMR (75.47 MHz, CDCl₃): δ 22 (CH_{3(a)}); 24.4 (CH_{3(c),(d)}); 25.1 (CH_{3(b)}); 26.6 (CH_{3(c),(d)}); 55.3 (OCH₃); 95.25 (C_{3'}); 49.8 (C_{4'}); 90.9 (C_{5'}); 122.7 (C₂); 122.8 (C₅). MS (FAB+) *m/z*=379 ([MH⁺], 61).
- Preparation of **6a**: 600 mg (1.6 mmol) of 2-(Δ¹-pyrazolinyl)-Δ³(1,3,4) oxadiazoline **5a** was diluted in 100 mL of dry dichloromethane, and was irradiated at 300 nm in a Rayonet apparatus for 30 min. A yellow colour was observed during the reaction. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (SiO₂: hexane/CH₂Cl₂ 5:1) to provide **6a** (111 mg, 25%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 1.12 (s, 3H, CH_{3(a)}); 1.26 (s, 3H, CH_{3(b)}); 3.78 (s, 3H, OCH₃); 3.05 (d, 1H, H₁); 2.82 (d, 1H, H₂). Syst AB J_{H1-H2}=7 Hz. ¹³C NMR (75.47 MHz, CDCl₃): δ 19.7 (CH_{3(a)}); 21.7 (CH_{3(b)}); 54.7 (OCH₃); 36.1 (C₁); 37.32 (C₂); 32.5 (C₃); 138.5 (C₄); 157.7 (C₇); 197.5 (C₁'); 141.5 (C₂').