Synthesis of N, N-Bis[1-chloroalkyl]carbodiimides

V. N. FETYUKHIN*, M. V. VOVK, L. I. SAMARAI

Institute of Organic Chemistry, Ukrainian SSR, Academy of Sciences, 252094 Kiev, U.S.S.R.

We have found that N,N'-bis[alkylidene]ureas 1 react with phosphorus(V) chloride to give a good yield of previously unknown N,N'-bis[1-chloroalkyl]carbodiimides 4.

Chlorination of 1 is carried out in boiling toluene and is complete within 1 h (cf. Ref. 1). Apparently, the reaction proceeds through formation of addition products 2 that transform into diazadienes 3 under cleavage of phosphoryl chloride. This transformation may be facilitated by the six-membered cyclic transition state. Obviously, the diazadiene structure is not sufficiently stabilized by the substituents R^{1} , R^{2} , R^{3} , R^{4} used here and undergoes rearrangement

0039-7881/79/0932-0738 \$ 03.00

© 1979 Georg Thieme Publishers

Table 1. N, N'-Bis[1-chloroalkyl]carbodiimides 4a-d

Pro No.	duct R¹	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	Yield [%]	b.p./torr	n_{D}^{20}	Molecular formula ^a	I.R. (CCl ₄) ν_{N-C-N} [cm ¹]	1 H-N.M.R. (CCl ₄) δ [ppm]	1ºF-N.M.R. (CCl ₄) δ [ppm]
4a	C ₆ H ₅	CF ₃	CF ₃	C ₆ H ₅	85	115°/0.05	1.5045	C ₁₇ H ₁₀ Cl ₂ F ₆ N ₂ (427.2)	2165	7.65–7.92 (m, 4H); 7.13–7.42 (m, 6H)	0.31
4b	C ₆ H ₅	CF ₃	t-C ₄ H ₉	t-C ₄ H ₉	70	125°/0.03	Marina a	$C_{18}H_{23}Cl_2F_3N_2$ (395.3)	2171	7.98–8.12 (m, 2H); 7.55– 7.66 (m, 3H); 1.58 (s, 9H); 1.52 (s, 9H)	-1.21
4c	C ₆ H ₅	t-C ₄ H ₉	t-C ₄ H ₉	C ₆ H ₅	70	172°/0.03	**************************************	C ₂₃ H ₂₈ Cl ₂ N ₂ (403.4)	2165	7.82–8.0 (m, 4H); 7.42–7.63 (m, 6H); 1.33 (s, 9H); 1.28 (s, 9H)	No. 177
4d	C ₆ H ₅	t-C ₄ H ₉	t-C ₄ H ₉	t-C ₄ H ₉	70	145°/0.03		C ₂₁ H ₃₂ Cl ₂ N ₂ (383.4)	2167	7.82–7.93 (m, 2H); 7.43–7.55 (m, 3H); 1.55 (s, 9H); 1.48 (s, 9H); 1.36 (s, 9H)	

^{*} The microanalyses were in satisfactory agreement with the calculated values (C ± 0.4 , H ± 0.5 , Cl ± 0.35).

Table 2. N,N'-Bis[alkylidene]ureas 1a-d

Prod	uct				Yield	m.p.	Molecular	l.R. (CCl ₄)	'H-N.M.R. (CCl ₄)	19F-N.M.R.	M.S.
No.	R¹	R ²	R ³	R ⁴	[%]	(hexane)	formula ^a	ν _{CΟ} , ν _{C-N} [cm ⁻¹]	δ [ppm]	(CCl ₄) δ [ppm]	(70 eV) m/e (M ⁺)
1a	C ₆ H ₅	CF ₃	CF ₃	C ₆ H ₅	70	96–98°	$C_{17}H_{10}F_6N_2O$ (372.3)	1720, 1670	7.68-7.95 (m, 10H)	10.9	372
1b	C_6H_5	CF ₃	t-C ₄ H ₉	t-C ₄ H ₉	85	64–65°	C ₁₈ H ₂₃ F ₃ N ₂ O (340.4)	1708, 1660	7.57-7.83 (m, 5H)	9.81	340
1c	C ₆ H ₅	<i>t</i> -C ₄ H ₉	t-C ₄ H ₉	C_6H_5	60	151–153°	$C_{23}H_{28}N_2O$ (348.5)	1685, 1640	7.51–7.73 (m, 10H); 1.48 (s, 9H); 1.43 (s, 9H) ^b	- de la	348
1d	C ₆ H ₅	t-C ₄ H ₉	t-C ₄ H ₉	t-C ₄ H ₉	85	80–81°	C ₂₁ H ₃₂ N ₂ O (328.5)	1695, 1650	7.40-7.55 (m, 5H); 1.48 (s, 18H); 1.43 (s, 9H)	-	328

^a The microanalyses were in satisfactory agreement with the calculated values (C ± 0.25 , H ± 0.45 , N ± 0.3).

with migration of the chlorine atom in the C=N-C system. Similar migrations were found in a series of α -chloroalkyl isocyanates previously².

The N,N'-bis[1-chloroalkyl]carbodiimides 4 are colourless oils which are stable in dry air. Their structure is confirmed by microanalysis, I.R. and 'H-N.M.R. spectroscopic data (Table 1).

The N,N'-bis[alkylidene]ureas 1 are obtained by reaction of the α -chloroalkyl isocyanates 5 with ketimines 6.

$$R^{2}-C-N=C=0 + HN=C R^{4}$$
5
6
$$\frac{(C_{2}H_{5})_{3}N/ether, 0^{\circ}}{-HCI} R^{2}C=N-C-N=C R^{3}$$
1a-d

Compounds 1a-d are colourless crystalline substances which are stable in dry air. Their structure is confirmed by microanalysis, I.R. and N.M.R. spectroscopic data (Table 2).

The I.R. spectra were measured with a UR-20 infrared spectrometer. The ¹H-N.M.R. spectra were measured with a Tesla BS467 N.M.R. spectrometer using hexamethyldisiloxane as internal standard. The ¹⁹F-N.M.R. spectra were measured with a Tesla BS 487B N.M.R. spectrometer using trifluoroacetic acid as internal standard.

N,N'-Bis[alkylidene]ureas 1a-d; General Procedure:

To a stirred solution of the α -chloroalkyl isocyanate 5 (0.1 mol) in anhydrous ether, a solution of ketimine 6 (0.1 mol) and triethyl-

^b CDCl₃ solution.

amine (0.1 mol) in ether is added dropwise. After the addition, the reaction mixture is heated at 30° and stirred during 3 h. Then triethylamine hydrochloride is filtered, washed with ether, and the filtrate is evaporated. Compounds 1a-d are crystallized from hexane (Table 2).

N,N'-Bis[1-chloroalkyl]carbodiimides 4a-d; General Procedure:

A solution of the urea 1a-d (0.05 mol) and phosphorus(V) chloride (0.06 mol) in anhydrous toluene (50 ml) is heated under reflux for 1 h. After cooling, the reaction mixture is treated with sulfur dioxide to remove an excess of phosphorus(V) chloride. The solvent is evaporated and compounds 4a-d are distilled in vacuo (Table 1).

Received: April 17, 1979

0039-7881/79/0932-0740 \$ 03.00

© 1979 Georg Thieme Publishers

¹ M. S. Newman, L. L. Wood, Jr., J. Am. Chem. Soc. 81, 4300 (1959).

² L. I. Samarai, V. I. Gorbatenko, I. E. Boldeskul, V. P. Luk'yan-chuk, Zh. Org. Chim. 12, 547 (1976); C. A. 85, 45789 (1976).

³ V. N. Fetyukhin, A. S. Koretskii, V. I. Gorbatenko, L. I. Samarai, Zh. Org. Chim. 13, 271 (1977).