Synthesis of N, N-Bis[1-chloroalkyl]carbodiimides V. N. FETYUKHIN*, M. V. VOVK, L. I. SAMARAI Institute of Organic Chemistry, Ukrainian SSR, Academy of Sciences, 252094 Kiev, U.S.S.R. We have found that N,N'-bis[alkylidene]ureas 1 react with phosphorus(V) chloride to give a good yield of previously unknown N,N'-bis[1-chloroalkyl]carbodiimides 4. Chlorination of 1 is carried out in boiling toluene and is complete within 1 h (cf. Ref. 1). Apparently, the reaction proceeds through formation of addition products 2 that transform into diazadienes 3 under cleavage of phosphoryl chloride. This transformation may be facilitated by the six-membered cyclic transition state. Obviously, the diazadiene structure is not sufficiently stabilized by the substituents R^{1} , R^{2} , R^{3} , R^{4} used here and undergoes rearrangement 0039-7881/79/0932-0738 \$ 03.00 © 1979 Georg Thieme Publishers Table 1. N, N'-Bis[1-chloroalkyl]carbodiimides 4a-d | Pro
No. | duct
R¹ | \mathbb{R}^2 | \mathbb{R}^3 | \mathbb{R}^4 | Yield
[%] | b.p./torr | n_{D}^{20} | Molecular
formula ^a | I.R. (CCl ₄)
ν_{N-C-N}
[cm ¹] | 1 H-N.M.R. (CCl ₄) δ [ppm] | 1ºF-N.M.R.
(CCl ₄)
δ [ppm] | |------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------|-----------|--|--|---|--|--| | 4a | C ₆ H ₅ | CF ₃ | CF ₃ | C ₆ H ₅ | 85 | 115°/0.05 | 1.5045 | C ₁₇ H ₁₀ Cl ₂ F ₆ N ₂
(427.2) | 2165 | 7.65–7.92 (m, 4H); 7.13–7.42 (m, 6H) | 0.31 | | 4b | C ₆ H ₅ | CF ₃ | t-C ₄ H ₉ | t-C ₄ H ₉ | 70 | 125°/0.03 | Marina a | $C_{18}H_{23}Cl_2F_3N_2$ (395.3) | 2171 | 7.98–8.12 (m, 2H); 7.55–
7.66 (m, 3H); 1.58 (s, 9H); 1.52 (s, 9H) | -1.21 | | 4c | C ₆ H ₅ | t-C ₄ H ₉ | t-C ₄ H ₉ | C ₆ H ₅ | 70 | 172°/0.03 | ************************************** | C ₂₃ H ₂₈ Cl ₂ N ₂
(403.4) | 2165 | 7.82–8.0 (m, 4H); 7.42–7.63 (m, 6H); 1.33 (s, 9H); 1.28 (s, 9H) | No. 177 | | 4d | C ₆ H ₅ | t-C ₄ H ₉ | t-C ₄ H ₉ | t-C ₄ H ₉ | 70 | 145°/0.03 | | C ₂₁ H ₃₂ Cl ₂ N ₂ (383.4) | 2167 | 7.82–7.93 (m, 2H); 7.43–7.55 (m, 3H); 1.55 (s, 9H); 1.48 (s, 9H); 1.36 (s, 9H) | | ^{*} The microanalyses were in satisfactory agreement with the calculated values (C ± 0.4 , H ± 0.5 , Cl ± 0.35). Table 2. N,N'-Bis[alkylidene]ureas 1a-d | Prod | uct | | | | Yield | m.p. | Molecular | l.R. (CCl ₄) | 'H-N.M.R. (CCl ₄) | 19F-N.M.R. | M.S. | |------|-------------------------------|---|---------------------------------|---------------------------------|-------|----------|---|--|---|--------------------------------|-------------------------------------| | No. | R¹ | R ² | R ³ | R ⁴ | [%] | (hexane) | formula ^a | ν _{CΟ} , ν _{C-N} [cm ⁻¹] | δ [ppm] | (CCl ₄)
δ [ppm] | (70 eV)
m/e
(M ⁺) | | 1a | C ₆ H ₅ | CF ₃ | CF ₃ | C ₆ H ₅ | 70 | 96–98° | $C_{17}H_{10}F_6N_2O$ (372.3) | 1720, 1670 | 7.68-7.95 (m, 10H) | 10.9 | 372 | | 1b | C_6H_5 | CF ₃ | t-C ₄ H ₉ | t-C ₄ H ₉ | 85 | 64–65° | C ₁₈ H ₂₃ F ₃ N ₂ O (340.4) | 1708, 1660 | 7.57-7.83 (m, 5H) | 9.81 | 340 | | 1c | C ₆ H ₅ | <i>t</i> -C ₄ H ₉ | t-C ₄ H ₉ | C_6H_5 | 60 | 151–153° | $C_{23}H_{28}N_2O$ (348.5) | 1685, 1640 | 7.51–7.73 (m, 10H); 1.48 (s, 9H); 1.43 (s, 9H) ^b | - de la | 348 | | 1d | C ₆ H ₅ | t-C ₄ H ₉ | t-C ₄ H ₉ | t-C ₄ H ₉ | 85 | 80–81° | C ₂₁ H ₃₂ N ₂ O
(328.5) | 1695, 1650 | 7.40-7.55 (m, 5H); 1.48 (s, 18H); 1.43 (s, 9H) | - | 328 | ^a The microanalyses were in satisfactory agreement with the calculated values (C ± 0.25 , H ± 0.45 , N ± 0.3). with migration of the chlorine atom in the C=N-C system. Similar migrations were found in a series of α -chloroalkyl isocyanates previously². The N,N'-bis[1-chloroalkyl]carbodiimides 4 are colourless oils which are stable in dry air. Their structure is confirmed by microanalysis, I.R. and 'H-N.M.R. spectroscopic data (Table 1). The N,N'-bis[alkylidene]ureas 1 are obtained by reaction of the α -chloroalkyl isocyanates 5 with ketimines 6. $$R^{2}-C-N=C=0 + HN=C R^{4}$$ 5 6 $$\frac{(C_{2}H_{5})_{3}N/ether, 0^{\circ}}{-HCI} R^{2}C=N-C-N=C R^{3}$$ 1a-d Compounds 1a-d are colourless crystalline substances which are stable in dry air. Their structure is confirmed by microanalysis, I.R. and N.M.R. spectroscopic data (Table 2). The I.R. spectra were measured with a UR-20 infrared spectrometer. The ¹H-N.M.R. spectra were measured with a Tesla BS467 N.M.R. spectrometer using hexamethyldisiloxane as internal standard. The ¹⁹F-N.M.R. spectra were measured with a Tesla BS 487B N.M.R. spectrometer using trifluoroacetic acid as internal standard. ## N,N'-Bis[alkylidene]ureas 1a-d; General Procedure: To a stirred solution of the α -chloroalkyl isocyanate 5 (0.1 mol) in anhydrous ether, a solution of ketimine 6 (0.1 mol) and triethyl- ^b CDCl₃ solution. amine (0.1 mol) in ether is added dropwise. After the addition, the reaction mixture is heated at 30° and stirred during 3 h. Then triethylamine hydrochloride is filtered, washed with ether, and the filtrate is evaporated. Compounds 1a-d are crystallized from hexane (Table 2). N,N'-Bis[1-chloroalkyl]carbodiimides 4a-d; General Procedure: A solution of the urea 1a-d (0.05 mol) and phosphorus(V) chloride (0.06 mol) in anhydrous toluene (50 ml) is heated under reflux for 1 h. After cooling, the reaction mixture is treated with sulfur dioxide to remove an excess of phosphorus(V) chloride. The solvent is evaporated and compounds 4a-d are distilled in vacuo (Table 1). Received: April 17, 1979 0039-7881/79/0932-0740 \$ 03.00 © 1979 Georg Thieme Publishers ¹ M. S. Newman, L. L. Wood, Jr., J. Am. Chem. Soc. 81, 4300 (1959). ² L. I. Samarai, V. I. Gorbatenko, I. E. Boldeskul, V. P. Luk'yan-chuk, Zh. Org. Chim. 12, 547 (1976); C. A. 85, 45789 (1976). ³ V. N. Fetyukhin, A. S. Koretskii, V. I. Gorbatenko, L. I. Samarai, Zh. Org. Chim. 13, 271 (1977).