Syntheses of the C1–C14 and C15–C25 Fragments of Amphidinolide C

Dimao Wu and Craig J. Forsyth*

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States

forsyth@chemistry.ohio-state.edu

Received December 21, 2012

Divergent syntheses of the C1–C14 and C15–C25 fragments of amphidinolide C have been achieved. The synthesis of the C15–C25 fragment featured cobalt-catalyzed modified Mukaiyama aerobic alkenol cyclization and sulfur-directed regiocontrolled Wacker oxidation of an internal alkene. The C1–C14 fragment was established by alkenyllithium addition to an aldehyde followed by a challenging olefination of a highly inert C9 ketone.

The amphidinolides represent a large family of marine natural products with 34 structurally varied members. They have been isolated from symbiotic dinoflagellates *Amphidinium sp.* associated with the Okinawan aceol flatworm *Amphiscolops sp.*¹ Among them, the amphidinolide C subgroup including amphidinolide C (1, from Y-5, Y-56 and Y71 strain), C2 (2, from Y71 strain), C3 (3, from Y56 strain), and F (4, from Y56 strain) share an identical 25-membered macrolide moiety with different aliphatic polyene substructures attached (Figure 1).² Intriguingly, their antitumor activities were highly related to the tail polyene domain, especially the C29 oxidation state. Bearing a free C29–OH, amphidinolide C (1) was the only subgroup member displaying remarkable *in vivo* cytotoxicity with

 IC_{50} 's below 10 ng/mL. Since the stereochemistry of **1** was fully elucidated in 2001–2003,³ significant synthetic efforts have been made toward amphidinolide C and related macrolides, including a recently reported total synthesis of amphidinolide F.⁴ Herein we report synthetic progress toward **1**, focusing on the syntheses of the C1–C14 and C15–C25 fragments.

ORGANIC LETTERS

2013 Vol. 15, No. 6

1178-1181

To facilitate the generation of analogues to support structure–activity relationship studies, a late-stage installation of the C26–C34 polyene domain after establishing the C1–C25 macrolide was planned (Figure 1). Retrosynthetically, the macrolide was disconnected at the C1

⁽¹⁾ For recent reviews, see: (a) Kobayashi, J.; Ishibashi, M. *Chem. Rev.* **1993**, *93*, 1753. (b) Chakraborty, T. K.; Das, S. *Curr. Med. Chem.* **2001**, *1*, 131. (c) Kobayashi, J.; Kubota, T. *J. Nat. Prod.* **2007**, *70*, 451. (d) Kobayashi, J. *J. Antibiot.* **2008**, *61*, 271.

^{(2) (}a) Amphidinolide, C.; Kobayashi, J.; Ishibashi, M.; Walchli, M. R.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Ohizumi, Y. J. Am. Chem. Soc. **1988**, 110, 490. (b) Amphidinolide C2: Kubota, T.; Sakuma, Y.; Tsuda, M.; Kobayashi, J. Mar. Drugs **2004**, 2, 83. (c) Amphidnolide C3: Kubota, T.; Suzuki, A.; Yamada, M.; Baba, S.; Kobayashi, J. Heterocycles **2010**, 82, 333. (d) Amphidinolide, F.; Kobayashi, J.; Tsuda, M.; Ishibashi, M.; Shigemori, H.; Yamasu, T.; Hirota, H.; Sasaki, T. J. Antibiot. **1991**, 44, 1259.

^{(3) (}a) Kubota, T.; Tsuda, M.; Kobayashi, J. *Org. Lett.* **2001**, *3*, 1363. (b) Kubota, T.; Tsuda, M.; Kobayashi, J. *Tetrahedron* **2003**, *59*, 1613.

^{(4) (}a) Shotwell, J. B.; Roush, W. R. Org. Lett. 2004, 12, 3865. (b) Bates, R. H.; Shotwell, J. B.; Roush, W. R. Org. Lett. 2008, 9, 4343. (c) Mahapatra, S.; Carter, R. G. Org. Biomol. Chem. 2009, 7, 4582. (d) Mahapatra, S.; Carter, R. G. Angew. Chem., Int. Ed. 2012, 51, 7948. (e) Ferrié, L.; Figadère, B. Org. Lett. 2010, 12, 4976. (f) Paudyal, M. P.; Rath, N. P.; Spilling, C. D. Org. Lett. 2010, 12, 5326. (h) Morra, N. A.; Pagenkopf, B. L. Org. Lett. 2011, 13, 572. (i) Mohapatra, D. K.; Rahaman, H.; Chorghade, M. S.; Gurjar, M. K. Synlett 2007, 567. (j) Mohapatra, D. K.; Dasari, P.; Rahaman, H.; Pal, R. Tetrahedron Lett. 2009, 50, 6276. (k) Fultz, M. W. Progress Towards the Total Synthesis of Amphidinolide C. Ph.D. Dissertation, Indiana University, Bloomington, IN, 2009.

Figure 1. Amphidinolide C subgroup and retrosynthesis.

Scheme 1. Synthesis of Ester 7

ester and the C14–C15 alkene, with a Yamaguchi macrolactonization⁵ and sulfone alkylation⁶ envisioned to accomplish these junctions. A similar strategy was used in Carter's total synthesis of amphidinolide F (4).^{4d} Ketone **5** and diene **6**, containing *trans*-tetrahydrofuran moieties, would be assembled from the corresponding building blocks (**7/8** and **9/10**, respectively).

The synthesis began with recognizing that the stereochemistry at C23-C24 of 5 could be derived from the known lactone 11 (Scheme 1). Lactone 11 could be prepared via either a vinylogous Mukaiyama aldol process⁷ or from carbohydrate precursors.⁸ Lactone **11** was subjected to a DIBALH reduction/Wittig reaction sequence^{4b} to afford α,β -conjugated ester 12. A variety of heteroconjugate addition conditions were initially surveyed to close the THF ring via intramolecular alkoxide additions upon the acrylate moiety. These included the use of bases KHMDS, NaH, MeONa, t-BuOK, DBU, and TBAF, among others. However, the diastereoselectivity of trans- vs cis-THF ring formation was no more than 2:1, respectively, and the separation of diastereomers was tedious. In contrast, a Mukaiyama aerobic alkenol cyclization catalyzed by Hartung's cobalt complex 13^9 was

Figure 2. Sulfur-directed regioselective Wacker oxidation.

applied to **12** to establish the C20–C23 *trans*-THF moiety of ester **14** in good yield and excellent diastereoselectivity. An inherent *trans*-selectivity in this type of cobalt catalyzed Mukaiyama THF ring formation is well established⁹ and has been applied in similar contexts, most notably by Pagenkopf.^{4h} Although Hartung and co-workers observed complete suppression of overoxidation side products in the presence of γ -terpinene at high concentration,^{9a} an epimeric mixture of α -hydroxyester side products was unavoidably generated in the reaction mixture here. A few transformations converted the 1,2-acetonide into PMB ether **7** (Scheme 1).

We envisioned that the C18 ketone within the challenging 1,4-diketone moiety of amphidinolide C might be installed via Raghavan's sulfur-directed regioselective Wacker oxidation of an internal alkene (Figure 2).¹⁰ Presumably, the sulfide moiety would direct palladium to

⁽⁵⁾ Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.

⁽⁶⁾ Roberts, D. W.; Williams, D. L. Tetrahedron 1987, 43, 1027.

⁽⁷⁾ Rassu, G.; Pinna, L.; Spanu, P.; Zanardi, F.; Battistini, L.; Casiraghi, G. J. Org. Chem. **1997**, 62, 4513.

^{(8) (}a) Lyga, J. W. Org. Prep. Proced. Int. **1992**, 24, 73. (b) Brimacombe, J. S.; Tucker, L. C. N. Carbohydr. Res. **1966**, 2, 341.

^{(9) (}a) Schuch, D.; Fries, P.; Dönges, M.; Pérez, B. M.; Hartung, J. J. Am. Chem. Soc. 2009, 131, 12918. (b) Inoki, S.; Mukaiyama, T. Chem. Lett. 1990, 67. (c) Pérez, B. M.; Schuch, D.; Hartung, J. Org. Biomol. Chem. 2008, 6, 3532. (d) Li, Y.; Zhou, F.; Forsyth, C. J. Angew. Chem., Int. Ed. 2007, 46, 279.

⁽¹⁰⁾ Raghavan, S.; Krishnaiah, V.; Rathore, K. Tetrahedron Lett. 2008, 49, 4999.

the proximal terminus of the tethered alkene, while water would preferably attack the distal carbon, affording the δ -keto-sulfide regioselectively after reductive elimination. Raghavan's Wacker process was reportedly most efficient with (*E*)-olefins, so this was targeted first.

Surprisingly, Julia-type olefination¹¹ employing sulfone derivatives of 7 were unreliable in providing the C17–C18 (*E*)-alkene. Alternatively, the anion of phosphonium iodide **16**, prepared from 7 via iodide **15**, was coupled with the known aldehyde **8**¹² under standard (*Z*)-selective Wittig olefination conditions to give alkene **17** in good yield (Scheme 2). Thereafter, an optimized procedure for Raghavan's Wacker oxidation was applied to convert **17** into ketone **5** with moderate yield and excellent regioselectivity, accompanied mostly by untransformed **17**. The (*Z*)-olefin geometry and the enhanced electron donation of sulfides versus sulfoxides may contribute to the observed low catalyst turnover. The C15–C25 fragment **5** was achieved in 12 steps and 13% overall yield in the

Scheme 2. Synthesis of C15-C25 Fragment 5

Scheme 3. Preparation of Ester 24

The synthesis of the C1–C9 segment **9** evolved from Roush's route which featured acidic butenolide formation followed by diastereoselective hydrogenation and intramolecular oxo-Michael cyclization (Scheme 3).^{4b} Alternatively, we relied upon the known aldehyde 18^{13} arising

Scheme 4. Synthesis of Allylic Alcohol 27

from δ -gluconolactone as the origin of the C7–C8 stereochemistry instead of Roush allylation to construct the *anti*-stereochemistry at C7–C8. Also, a practical Ando olefination¹⁴ involving diphenyl phosphonate **19** was employed to establish the C4–C5 (*Z*)-alkene. Acidic lactonization with a modified workup¹⁵ afforded triol **21**. Facial selective hydrogenation then established the C4 stereogenic center.^{4b} Selective monosilylation and bis-MOM installation provided lactone **23**. Conversion into the corresponding lactol with DIBALH allowed incorporation of the α , β -conjugated ester of **24**.

Intermediate 24 was cyclized to the C3–C6 *trans*-THF ring upon treatment with TBAF,^{3,4b} with concomitant loss of the C9 *O*-silyl group (Scheme 4). The C9 alcohol was temporarily resilylated before the C1 ester was reduced, and the resultant alcohol was protected with a robust TBDPS group. Chemoselective cleavage of the C9 *O*-TES ether in the presence of MOM and TBDPS protecting groups was then achieved with PPTS in MeOH/ CH_2Cl_2 to give primary alcohol 26. Parikh–Doering oxidation¹⁶ converted 26 into aldehyde 9 as a prelude to installation of the C10–C14 side chain. For this, we relied upon lithium–halogen exchange of Carter's iodide 10^{4c}

⁽¹¹⁾ Aïssa, C. Eur. J. Org. Chem. 2009, 1831.

^{(12) (}a) Nicolaou, K. C.; Bunnage, M. E.; McGarry, D. G.; Shi, S.; Somers, K.; Wallace, P. A.; Chu, X.-J.; Agrios, K. A.; Gunzner, J. L.; Yang, Z. *Chem.—Eur. J.* **1999**, *5*, 599. (b) Larsson, M.; Andersson, J.; Liu, R.; Högberg, H.-E. *Tetrahedron: Asymmetry* **2004**, *15*, 2907.

⁽¹³⁾ Zhou, Y.; Murphy, P. V. Org. Lett. 2008, 10, 3777.

⁽¹⁴⁾ Ando, K. J. Org. Chem. 1998, 63, 8411.

⁽¹⁵⁾ See Supporting Information for details.

⁽¹⁶⁾ Parikh, J. R.; Doering, W. v. E. J. Am. Chem. Soc. 1967, 89, 5505.

and addition to **9** to provide allylic alcohol **27** as a 1:1 diastereomeric mixture.

In the conversion of 27 into enone 28, the use of pyridine with Dess-Martin periodinane¹⁷ was superior to sodium bicarbonate powder for buffering acidic species and suppressing decomposition (Scheme 5). As similarly observed by Carter,^{4c} methylenation of the C9 ketone was challenging. Several common methylenation reagents failed to convert ketone 28 into the desired diene 6, including Petasis' reagent,¹⁸ which was effective for Carter's enone. Encouragingly, Takai-Utimoto olefination involving bis(iodozincio)methane and $TiCl_4^{19}$ provided diene 6 in 40-60% yield. However, the modest and variable yields associated with partial loss of a MOM group and other side products due to the strong Lewis acidity were overall unsatisfactory. Alternatively, Peterson olefination in a two-step $protocol^{20}$ provided **6** in reproducibly high efficiency. Specifically, the use of KHMDS rather than t-BuOK or KH was the most effective and convenient reagent to initiate the Peterson elimination under basic conditions. The C1-C14 fragment 6 was synthesized from known aldehyde 18 in 11% overall yield in 17 steps in the longest linear sequence.

In summary, the C15-C25 fragment of amphidinolide C was prepared using a Mukaiyama aerobic alkenol

Oshima, K.; Utimoto, K. J. Organomet. Chem. 2001, 617–618, 39. (20) (a) Peterson, D. J. J. Org. Chem. 1968, 33, 780. (b) Wiedner,

(20) (a) Feterson, D. J. J. Org. Chem. 1908, 55, 780. (b) wiedner, S. D.; Vedejs, E. Org. Lett. 2010, 12, 4030.

Scheme 5. Completion of C1–C14 Fragment Diene 6

cyclization to close the C20–C23 *trans*-tetrahydrofuran moiety and a sulfur-directed regiocontrolled Wacker oxidation to install the C18 ketone. The complementary C1–C14 fragment synthesis featured the assembly of the C3–C6 *trans*-tetrahydrofuran ring by an established intramolecular oxo-Michael cyclization, and an efficient Peterson olefination of the recalcitrant C9 ketone. This work establishes an avenue toward a projected total synthesis of amphidinolide C and targeted analogs.

Acknowledgment. We thank OSU for financial support and the Ohio BioProducts Innovation Center for support of the OSU Chemistry Department Mass Spectrometry Facility.

Supporting Information Available. Experimental procedure, characterization data, ¹H and ¹³C NMR spectra for previously unreported compounds. This material is available free of charge via the Internet at http://pubs.acs. org.

^{(17) (}a) Dess, D. B.; Martin, J. C. J. Org. Chem. **1983**, 48, 4155. (b) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. **1991**, 113, 7277.

⁽¹⁸⁾ Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392.
(19) (a) Hibino, J.; Okazoe, T.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1985, 26, 5579. (b) Matsubara, S.; Mizuno, T.; Otake, T.; Kobata, M.; Utimoto, K.; Takai, K. Synlett 1998, 1369. (c) Matsubara, S.;

The authors declare no competing financial interest.