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ABSTRACT: A stable crystalline 2,5-
digermaselenophene was synthesized. In contrast to 
hitherto reported selenophenes, this digermaselenophene 
exhibits a trans-pyramidalized structure, which is due to 
its electronic properties. The practical utility of this 2,5-
digermaselenophene is reflected in its ability to activate 
dihydrogen and acetylene at room temperature in the 
absence of a transition-metal complex, and this behavior 
can be rationalized on the basis of its physico-chemical 
properties, which are characterized by considerable elec-
tron-donating and -accepting abilities.   

Organic optoelectronic materials are considered 
the next generation of electron-transporting materials.1 
Suitable building blocks for such advanced optoelectron-
ic materials should be designed to exhibit the following 
physical properties: (i) a low LUMO level, (ii) a high 
HOMO level, and (iii) a corresponding small HOMO-
LUMO gap in order to promote the transfer of electrons. 
These very requirements should also be advantageous 
for functional main-group-element-containing molecules 
that aim at the activation of small inert molecules.2 On 
account of their potential electron-donating ability, thio-
phenes often serve as building blocks for organic optoe-
lectronic materials3 such as organic field-effect transis-
tors (OFETs), organic light-emitting diodes (OLEDs), 
and organic photovoltaics (OPVs). Much research has 
been focused on modifying thiophenes, e.g. via exten-
sion of their p-conjugation system and the introduction 
of p-conjugated functional substituents, which are ex-
pected to diminish the HOMO-LUMO gap under con-
comitant improvement of the electron-transporting abil-
ity.4 Despite the small HOMO-LUMO gap of a thio-
phene, even such thiophene derivatives would not acti-
vate small inert molecules. Similarly, selenophenes, i.e., 
selenium analogues of thiophenes, are also excellent 
building blocks for organic optoelectronic materials. 
Specifically, they exhibit a smaller ionization energy 
relative to thiophenes, i.e., an effective electron-donating 
ability.5 While the HOMO-LUMO gaps of thiophenes 
and selenophenes may be small enough as optoelectron-

ic materials, but no example of a thiophene/selenophene 
derivative with very small HOMO-LUMO gap enough 
to activate small molecules. Moreover, the variety of 
available organic functional groups and molecular de-
signs should be limited, since the physical properties of 
thiophenes and selenophenes predominantly reflect the 
p-electron-properties of the butadiene moiety, which 
suggests that substitution with organic substituents 
and/or replacement of the sulfur atom with selenium 
should not induce a remarkable improvement. The re-
placement of the carbon atoms in the butadiene moiety 
in thiophenes or selenophenes with heavier main-group 
elements has not yet been investigated in detail, mostly 
due to a lack of effective synthetic strategies or appro-
priate precursors.  

 
Scheme 1.  Synthesis of 2,5-digermaselenophene 1, and 
subsequent treatment with elemental selenium to give 4 
and 5.  

Recent developments in the area of main-group-
element chemistry have allowed the preparation of sta-
ble p-bonded species of heavier-group-14 elements,6 
which demonstrates that the incorporation of heavier 
main-group elements into p-systems significantly in-
creases the electron affinity of the latter due to their ex-
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tremely low-lying p*-orbitals. Thus, a 2,5-
dimetallaselenophene, which contains heavier-group-14 
elements instead of carbon atoms at the 2- and 5-
positions, should represent fascinating physical and 
chemical properties due to its unique electronic struc-
ture.7 Herein, we report the synthesis of digermaseleno-
phene 1 and its ability to activate small molecules, 
which renders 1 also a promising prospective building 
block for advanced optoelectronic materials.  

1,2-Digermacyclobutadiene 2 can serve as a 
suitable precursor for heterocycles, given that insertion 
reactions may occur at the reactive Ge=Ge p-bond.8,9 
When 2, which was obtained from the reaction between 
the stable digermyne TbbGeºGeTbb (Tbb = 2,6-
[CH(SiMe3)2]2-4-t-butyl-phenyl) with diphenylacety-
lene,10 was treated with an equimolar amount of 
(Me2N)3P=Se in C6D6 at room temperature, the color of 
the reaction mixture changed from dark red to purple. 
Removal of the solvent and (Me2N)3P under reduced 
pressure afforded 2,5-digermaselenophene 1 as purple 
crystals (Scheme 1).11 While 1 is extremely sensitive 
toward air and moisture, which results in complicated 
product mixtures, 1 is thermally stable in benzene upon 
heating to 80 ˚C under an atmosphere of inert gas. The 
formation of 1 should most likely be interpreted in terms 
of the formation of selenadigermirane 3 as an intermedi-
ate, which could easily undergo transformation into 1.12 
Although the reaction of 2 with (Me2N)3P=Se was care-
fully monitored by 1H NMR spectroscopy, only the sig-
nals of 1 and 2 were observed under light shielding con-
ditions, due to the facile conversion of 2 into 1. In a pre-
vious study, the selenization of 2 with elemental seleni-
um resulted in the formation of heterocycles 4 and 5.9c 
Since further selenization of 1 with elemental selenium 
afforded 4 and 5 exclusively, 1 could be conceived as an 
intermediate in the reaction of 2 with elemental selenium 
that affords 4 and 5.  

 

Figure 1.  Molecular structure of 1 (ORTEP drawing with 
thermal ellipsoids set to 50% probability). The minor parts 
of the disordered moieties, hydrogen atoms, and the sol-
vents are omitted for clarity; (a) entire molecule, (b) side 
view of the [SeGe2C2] ring, and (c) top view of the 
[SeGe2C2] ring; selected bond lengths are shown in Å. aThe 
pyramidalized angle (a) is defined as the angle between the 
Se–Ge1–Ge2 and Se–C1–C2 planes. 

An X-ray crystallographic analysis (Figure 1)13 
revealed that 2,5-digermaselenophene 1 exhibits a non-
planar structure with a trans-pyramidalized geometry of 
the five-membered [SeGe2C2] ring with a trans-
pyramidalized angle (a) of 7.8˚, which stands in sharp 
contrast to the completely planar structure of previously 
reported selenophenes.14 However, the bent structure of 
1 should not be attributed to the sterically demanding 
Tbb substituents on the Ge atoms, but rather to the in-
trinsic nature of the 2,5-digermaselenophene. The results 
of theoretical calculations on the parent 2,5-
digermaselenophene SeGe2C2H4 suggested that its pla-
nar structure is a transition state; the energy minimum is 
the trans-pyramidalized structure, which is 7.2 kcal/mol 
lower in SCF-energy relative to the planar geometry. 
This result can be rationalized in terms of the weakness 
of the Ge-containing p-bond, i.e., given the small over-
lap of the 4p orbitals, a 2,5-digermaselenophene would 
adopt a trans-pyramidalized geometry to form a C1=C2 
p-bond rather than keeping its Ge1=C1 and Ge2=C2 p-
bonds. In other words, the contribution of resonance 
structures B or C (Scheme 2) should become dominant.  

 
Scheme 2.  Conceivable resonance structures for a 2,5-
digermaselenophene.  

It should be noted that the results of NBO cal-
culations15 revealed a double-bond character for the 
C1=C2 bond, and p-type bonding interaction between 
the Ge atoms, thus supporting a 3-center-4-electron p-
bonding16 through the stabilization of the electron-
deficient Ge atoms by coordination of lone pairs of the 
Se atoms in resonance structure B. Conversely, the re-
sults of NPA calculations revealed a negative charge at 
the Se atom and a positive charge at the Ge atoms, sup-
porting electron donation from the Ge atoms to the cen-
tral Se atom, indicative of non-negligible contributions 
from the donor-acceptor model C (NPA charges for 1: 
qSe = –0.35; qGe = +0.90). In their entirety, these results 
suggest that such a 2,5-digermaselenophene should ex-
hibit a trans-pyramidalized structure at the energetic 
minimum due to the predominant contribution of B to-
gether with minor contributions from the donor-acceptor 
interactions of C. The results of the theoretical calcula-
tions on the real model (1) and the parent models of se-
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lenophene derivatives (1’, 6, 7) are summarized in Table 
1. The C1–C2 bond length of 1 is relatively short 
[1.375(4) Å], suggesting a partial π-bond character, 
while the Ge–C bond lengths in the five-membered ring 
are elongated relative to those of previously reported 
Ge=C bonds (ca. 1.83 Å).17 In addition, a comparison of 
the structural parameters of the simple models 
[SeE2C2H4] (E = C (7), Si (6), Ge(1’)) clearly suggests 
an increasing contribution of resonance structure A as 
the E atom descends the periodic table.  

 
Table 1. Results of the theoretical calculations.  

 1a  
E=Ge 
R=Tbb 
R’=Ph 

1b  
E=Ge 
R=Tbb 
R’=Ph 

1’c 
E=Ge 
R=H 
R’=H 

6c 
E=Si 
R=H 
R’=H 

7c 
E=C 
R=H 
R’=H 

Se–E1/Å 2.3118(4) 2.325 2.345 2.258 1.856 
Se–E2/Å 2.3153(4) 2.325 2.344 2.258 1.856 
E1–C1/Å 
E2–C2/Å 

1.922(3) 
1.921(3) 1.918 1.915 1.809 1.376 

C1–C2/Å 1.375(4) 1.390 1.368 1.385 1.420 
E1–Se–E2/º 91.21(2) 92.5 90.9 89.4 87.6 
a/º d 7.8 7.0 8.5 8.5 0.0 
dSe/ppm 481.8e 520.6f --- --- --- 
dC1/2/ppm 176.8e 188.3f --- --- --- 
NICS(0) --- –11.2f –12.5i –12.6i –13.4i 
NICS(1) --- –8.0f –10.5i –10.4i –10.9i 
aObserved by XRD analysis. bOptimized at the B3PW91/6-
311G(3df)<Se,Ge,Si>/6-311G(d)<C,H> level of theory cOpti-
mized at MP2/6-311G(3d) level of theory. dDefined as the angle 
between the Se–E1–E2 and Se–C1–C2 planes. eMeasured at r.t. in 
C6D6. fCalculated at the GIAO-B3PW91/6-
311G(3df)<Se,Ge,Si>/6-311G(d)<C,H> level of theory. iCalculat-
ed at GIAO-MP2/6-311G(3d) level of theory. 

Based on the calculated NICS values (NICS(0) 
= –11.2; NICS(1) = –8.0), digermaselenophene 1 should, 
despite its trans-pyramidalized structure, exhibit consid-
erable levels of aromaticity similar to parent seleno-
phene 7. In addition, NICSzz(r)18 scan calculations de-
livered an NICSzz(1.3) value of –24.1 for 1’, which is 
slightly smaller but still comparable to the NICSzz(1.0) 
value for a selenophene (–29.2). Accordingly, it can be 
concluded that 2,5-digermaselenophenes should exhibit 
aromaticity similar to that of selenophenes and 2,5-
disilaselenophenes. Due to the aromatic p-conjugation 
system in digermaselenophene 1, a small ionization en-
ergy and a high electron affinity were calculated, sug-
gesting excellent electron-donating and -accepting abili-
ties. The low-field shifted 77Se NMR resonance (dSe = 
481.8 in C6D6) for digermaselenophene 1, which could 
be reproduced by GIAO calculations (dSe = 520.6), sug-
gests that 1 retains its trans-pyramidalized structure in 
solution.19 

Due to the trans-pyramidalized structure of 1, 
the energy levels of the slipped p-type HOMO (–5.04 
eV) and LUMO (–2.69 eV) are raised and lowered, re-
spectively.6 In addition, the small HOMO-LUMO gap of 
1 (2.35 eV)7 is responsible for its purple color, which 
stands in contrast to conventional selenophenes, which 
are typically colorless/pale yellow. The UV/vis spectrum 
of 1 in hexane reveals a strong absorption at lmax = 536 
nm (e 7,800), which was assigned to the HOMO-LUMO 
transition based on TDDFT calculations (533.6 nm; f = 
0.2164).19 Such an absorption at longer wavelengths 
suggests that 2,5-digermaselenophenes could serve as 
promising building blocks for optoelectronic materials. 

 

Figure 2. (a) HOMO of 1 (–5.04 eV) and schematic illus-
tration of the interaction with the s* orbital of H2. (b) 
LUMO of 1 (–2.69 eV) and schematic illustration of the 
interaction with the s orbital of H2. B3PW91/6-
311G(3df)<Se,Ge,Si>/6-311G(d)<C,H> level of theory. 

 
Scheme 3.  Reactions of 2,5-digermaselenophene 1 with 
small molecules. aIsolated yield. bYield estimated based 
on the 1H NMR spectrum of the crude mixture.  

Considering the frontier orbitals of 1, and espe-
cially the small HOMO-LUMO gap, 1 could be highly 
susceptible toward pericyclic or addition reactions. The 
HOMO and LUMO of 1 (Figure 2) exhibit a predomi-
nant contribution of the p-type Ge–Se–Ge 3-center-4-
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electron p-bond.16 As expected, digermaselenophene 1 
readily reacts with alkynes and H2 under ambient condi-
tions to form the corresponding adducts in moderate 
yield (Scheme 3). Notably, 1 is able to activate and fix 
molecular hydrogen and acetylene in the absence of any 
transition metal.2a,20  

In conclusion, we have demonstrated the syn-
thesis of stable 2,5-digermaselenophene 1, and demon-
strated its ability to activate small molecules such as 
dihydrogen and acetylenes. Given the electronic struc-
ture of 1 and its high reactivity toward the activation of 
small molecules, 1 is also a promising prospective build-
ing block for advanced optoelectronic materials. Further 
investigations into the electrochemical properties of such 
digermaselenophenes are currently in progress in our 
laboratories. 
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