
SYNTHESIS OF N-FORMYLINDOLINE DERIVATIVES BY LEWIS ACID CATALYZED CYCLIZATIONS OF o-(2-HYDROXYALKYL)PHENYL ISOCYANIDES

Yoshihiko ITO, Kazuhiro KOBAYASHI, and Takeo SAEGUSA Department of Synthetic Chemistry, Faculty of Engineering Kyoto University, Kyoto 606

o-(2-Hydroxyalkyl)phenyl isocyanides (2), which are prepared by the reaction of o-lithiomethylphenyl isocyanides (1) with ketone and aldehyde are cyclized by Lewis acid catalyst to N-formylindoline derivatives (3).

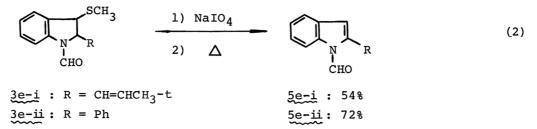
Syntheses of indoles and the related heterocycles¹⁾ have been achieved by the reaction of o-lithiomethylphenyl isocyanide (la), which is generated in situ at -78°C from o-tolyl isocyanide, with electrophiles followed by intramolecular cycloaddition. It was already reported²⁾ that o-(2-hydroxyalkyl)phenyl isocyanide (2) prepared by the reaction of la with ketone and aldehyde were cyclized by Cu_2O catalyst to afford 4,5-dihydro-3,1-benzoxazepines in high yields. Herein, we wish to describe a new synthetic method of N-formylindoline derivatives (3), in which o-(2-hydroxyalkyl)phenyl isocyanide (2) is treated with a Lewis acid such as $BF_3 \cdot OEt_2$, $ZnCl_2$ and $SnCl_4$.

As already reported,²⁾ o-lithiomethylphenyl isocyanide (<u>la</u>) readily reacted with aliphatic and aromatic saturated aldehyde and ketone to furnish o-(2-hydroxyalkyl)phenyl isocyanides (<u>2</u>) in high yields. In the present study, we found that α , β -unsaturated ketones and aldehydes also reacted with <u>la</u> in the manner of 1,2-addition³) to afford the corresponding o-(2-hydroxyalkyl)phenyl isocyanides (<u>2</u>). Preparations of a variety of o-(2-hydroxyalkyl)phenyl isocyanides are summarized in Table 1.

Treatment of o-(2-hydroxyalkyl)phenyl isocyanides (2) thus prepared with Lewis acid catalyst gave N-formylindoline derivatives (3) as listed in Table 1. When o-(2-hydroxyalkyl)phenyl isocyanides ($2a-i \sim 2a-iii$ and 2b), prepared from 1 and α , β -unsaturated ketones, were treated with a catalytic amount of BF₃·OEt₂

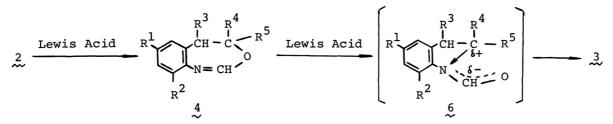
$R^{1} \xrightarrow[R^{2}]{CHLi}_{NC} + R^{4} cor^{5} \xrightarrow[R^{2}]{1}$			$R^{1} \xrightarrow{R^{3}}_{CH} CH \xrightarrow{I}_{OH} CH \xrightarrow{R^{5}}_{OH} CH$		(3) R^{1} R^{2} R^{2} R^{3} R^{4} R^{5} R^{5} R^{2} R^{5}		
Entry	Isocyanides	Carbonyl Compounds	2	(%) ^a	3	(%) ^{a,b}	$\begin{array}{c} \text{Method}^{c} \\ (2 \rightarrow 3) \end{array}$
1			93	(<u>2a-i</u>)	80	(<u>3a-i)</u>	A
2		O Ph	67	(<u>2a-ii</u>)	68	(<u>3a-ii</u>)	A
3			98	(<u>2a-iii</u>)	62	(<u>3a-iii</u>)	A
4	la		\sim 100	(2a-iv)	77	(<u>3a-iv</u>)	В
5	$(R^{1}=R^{2}=R^{3}=H)$		^H 2 86	(2a-v)	76	(<u>3a-v</u>)	В
6	(77	(<u>2a-vi</u>)	81	(<u>3a-vi</u>)	В
7			\sim 100	(2a-vii)	70	(<u>3a-vii</u>)	В
8			78	(<u>2a-viii</u>)	75	(<u>3a-viii</u>)	с
9			91	(<u>2a-ix</u>)	48	(<u>3a-ix</u>)	с
10			97	(<u>2a-x</u>)	32	(<u>3a-x</u>)	D
11	$(R^1=Me, R^2=R^3=H)$	i.	94	(2b)	63	<u>(3b</u>)	А
12	$(R^{l}=R^{3}=H, R^{2}=Me)$		82	(2c)	66	(<u>3c</u>)	с
13	$(R^1=R^2=H, R^3=Me)$	~ 0 Ph	87	(2d)	73	(<u>3d</u>)	В
14	le	∫ ^H O	80	(<u>2e-i</u>)	70	(<u>3e-i</u>)	с
15	$(R^1 = R^2 = H, R^3 = MeS)$	H Ph	80	(<u>2e-ii</u>)	60	(<u>3e-ii</u>)	с

Table 1. Synthesis of N-Formylindolines (3)


a) Isolated Yields. b) Reference 7. c) Method A : $0.1 \text{ equiv } BF_3 \cdot OEt_2, 0^{\circ}C,$ 1 h; Method B : $0.1 \text{ equiv } BF_3 \cdot OEt_2, \text{ room tempt., overnight; Method C : 1 equiv } ZnCl_2, \text{ room tempt., overnight; Method D : 1 equiv } SnCl_4, \text{ room tempt., overnight.}$

(-78°C to 0°C; lhr), the cyclization took place to furnish N-formylindoline derivatives (3a-i \sim 3a-iii and 3b) in good yields.⁴⁾ o-(2-Hydroxyalkyl)phenyl isocyanides (2a-iv \sim 2a-vii and 2d), prepared from 1 and aromatic ketones, were also cyclized to the corresponding N-formylindolines by treatment with BF₃·OEt₂ catalyst (room temperature; overnight). The cyclizations of o-(2-hydroxyalkyl)-phenyl isocyanides (2a-viii, 2a-ix, 2c, 2e-i and 2e-ii), prepared from 1 and α , β -unsaturated aldehydes or aromatic aldehydes, were more efficiently

catalyzed by one equivalent of $2nCl_2$ than by $BF_3 \cdot OEt_2$. Moreover, o-(2-hydroxy-alkyl)phenyl isocyanides prepared from 1 and aliphatic ketone were not cyclized by $BF_3 \cdot OEt_2$, but cyclized by $SnCl_4$ catalyst. For instance, the cyclization of o-(2-hydroxy-2-methylpropyl)phenyl isocyanide (2a-x) was induced by one equivalent of $SnCl_4$ to afford N-formyl-2,2-dimethylindoline (3a-x) in a 32% yield.


A typical experimental procedure for the preparation of N-formylindoline is exemplified as follows. To a stirred solution of 3.0 mmol of la^{11} in 8 mL of diglyme at -78°C was dropwise added 588 mg (6 mmol) of mesityl oxide. The red color characteristic of la disappeared immediately. The reaction mixture was quenched at -78°C with aq NH₄Cl, extracted with ether, and distilled to give o-(2-hydroxy-2,4-dimethyl-3-pentenyl)phenyl isocyanide (2a-i) (93%) (bp 105°C/0.2 mmHg) [IR (neat) 3450, 2120 cm⁻¹; NMR (CCl₄ with Me₄Si) \$ 1.2 (broad 1H), 1.29 (s, 3H), 1.62 (d, 6H), 2.84 (s, 2H), 5.15 (m, 1H), 7.1-7.4 (m, 4H)]. Next, to a solution of 603 mg (2.8 mmol) of 2a-i in 28 mL of CH₂Cl₂ at -78°C was added 40 mg (0.28 mmol) of BF₃·OEt₂. After stirring at -78°C for 10 min, the mixture was warmed up to 0°C and then stirred for additional 1 hr.⁵⁾ The reaction mixture was washed with water and distilled to furnish N-formyl-2-methyl-2-(2-methyl-1-propenyl)indoline (3a-i) (80%) (bp 120°C/0.2 mmHg) [IR (neat) 1670 cm⁻¹; NMR (CDCl₃ with Me₄Si) \$ 1.47 (s, 6H), 1.68 (s, 3H), 2.88 (d, 1H), 3.22 (d, 1H), 5.47 (m, 1H), 6.9-7.2 (m, 3H), 7.9-8.3 (m, 1H), 8.33 (s, 1H)].

The benzylic carbanions $(\underline{lb} \sim \underline{le})$ generated in situ from 2,4-xylyl isocyanide, 2,6-xylyl isocyanide, o-ethylphenyl isocyanide and o-(methylthiomethyl)phenyl isocyanide can enter to the present indoline syntheses, according to the equation (1). N-Formyl-3-methylthioindolines (3e-i and 3e-ii) thus prepared were converted to indole derivatives (5e-i and 5e-ii) by oxidation with NaIO₄ and the subsequent elimination reaction.⁶

Finally, attempts to cyclize o-(3-hydroxyalkyl)phenyl isocyanides,^{1),2)} which are prepared by the reaction of 1 with epoxide, gave rise to N-formyl-1,2,3,4-tetra-hydroquinolines only in low yields. Treatment of o-(3-hydroxy-3-methylbutyl)phenyl isocyanide with SnCl₄ afforded 11% of N-formyl-2,2-dimethyl-1,2,3,4-tetrahydro-quinoline.

A possible reaction mechanism for the Lewis-acid catalyzed cyclizations of o-(2-hydroxyalkyl)phenyl isocyanide to N-formylindolines may involve a cationic 1,3rearrangement of dihydro-3,1-benzoxazepines (4), which may be initially produced by the intramolecular insertion of the isocyanide carbon into the O-H linkage of 2. The finding that dihydro-3,1-benzoxazepines (4) prepared independently²⁾ underwent 1,3-rearrangement to produce the corresponding N-formylindolines (3) under the same reaction conditions is taken to support the reaction mechanism.

A cationic character of the 1,3-rearrangement is consistent with an observation that the cyclizations of 2 with aryl and vinyl substituents at C_2 of the alkyl side chain proceeded well to give 3 in high yields. The aryl and vinyl substituents may be expected to stabilize the assumed cationic species (6) in the 1,3-rearrangement.

No general method for synthesis of indoline derivatives has not been known to our best knowledge. Some preparations of indoline skeletons have been hitherto achieved by the thermolysis of o-alkylarylazides⁸⁾ and the deoxygenation of oalkylnitrobenzenes.⁹⁾ The present reactions provide a convenient preparative method of indoline derivatives, especially 2-aryl and 2-vinyl substituted indolines.

References and Notes

- 1) Y. Ito, K. Kobayashi and T. Saegusa, J. Am. Chem. Soc., <u>99</u>, 3532 (1977).
- 2) Y. Ito, K. Kobayashi and T. Saegusa, Tetrahedron Lett., 2087 (1978).
- 3) Benzylideneacetophenone and cyclohexenone reacted with <u>la</u> to give the corresponding 1,4-adducts in 97 and 80% yields, respectively. 3-Penten-2-one reacted with <u>la</u> to give a mixture of 1,2-adduct (57%) and 1,4-adduct (38%).
- 4) A minor by-product is N-[o-(l-alkenyl)phenyl]formamide.
- 5) Higher reaction temperature and prolonged reaction time led to somewhat decreased yield in the cases with $BF_3 \cdot OEt_2$ catalyst.
- 6) B. M. Trost, T. N. Salzmann, and K. Hiroi, J. Am. Chem. Soc., <u>98</u>, 4887 (1976).
- 7) 3a-ii [Tlc on silica gel, $R_f=0.44$ (CHCl₃)] : IR (neat) 1667 cm⁻¹; NMR (CDCl₃)\$1.68 and 1.71 (s, 3H), 2.95 (d, 1H), 3.27 (d, 1H), 6.22 (d, 1H), 6.56 (d, 1H), 7.0-7.4 (m, 8H), 8.0-8.3 (m, 1H), 8.37 and 8.96 (s, 1H). 3-iv [Tlc on silica gel, $R_f=0.68$ (10:1 CHCl₃-AcOEt)]: IR (neat) 1666 cm⁻¹; NMR (CDCl₂) § 0.3-0.7 (m, 4H), 0.9-1.3 (m, 1H), 1.28 and 1.57 (s, 3H), 2.6-3.2 (m, 2H), 6.9-7.2 (m, 3H), 7.9-8.2 (m, 1H), 8.57 and 8.93 (s, 1H).3a-viii (bp 110°C/0.1 mmHg): IR (neat) 1674 cm⁻¹; NMR (CDCl₃) § 1.64 and 1.73 (d, 3H), 2.6-3.6 (m, 2H), 4.4-5.2 (m, 1H), 5.3-5.7 (m, 2H), 6.6-7.2 (m, 3H), 7.8-8.0 (m, 1H), 8.14 and 8.65 (s, 1H). 3a-x [Tlc on silica gel, $R_f=0.61$ (10:1 CHCl₃-AcOEt)]: IR (neat) 1665 cm⁻¹; NMR (CCl₄) § 1.68 (s, 3H), 1.74 (s, 3H), 2.97 (d, 2H), 6.8-7.2 (m, 3H), 8.0-8.3 (m, 1H), 8.47 and 8.99 (s, 1H). 3d [A mixture of diastereoisomers; Tlc on silica gel, Rf=0.62 (100:1 CHCl_-ACOEt)]: IR (neat) 1670 cm⁻¹; NMR (CDCl₃) 0.82 and 1.27 (d, 3H), 1.70 (s) and 2.00 (d) (3H), 3.3-3.8 (m, 1H), 7.0-7.6 (m, 9H), 8.1-8.4 (m, 1H). 8) G. Somolinsky and B. I. Feuer, J. Am. Chem. Soc., <u>83</u>, 2489 (1961). 9) R. J. Sundberg, J. Am. Chem. Soc., <u>88</u>, 3781 (1966).

(Received September 29, 1980)