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ABSTRACT: At elevated temperatures, N-cyanosulfoximines react with
Meldrum’s acid derivatives to give sulfoximines with N-bound 5-
carbonyl-1,3-oxazine-2,4-dione groups. A representative product was
characterized by single-crystal X-ray structure analysis. The product
formation involves an unexpected molecular reorientation requiring
several sequential bond-forming and -cleaving processes.

For centuries, organic chemists have discovered unprece-
dented reaction pathways. Many of those have become the

basis for “name reactions”.1 Serendipity, rational design, and
computational reaction prediction have all proven fruitful in
expanding the preparative boundaries of organic chemistry.2

Because of their valuable chemical features and broad
bioactivity profiles, sulfoximines have continuously been
investigated and developed for applications in both crop
protection and medicinal chemistry.3 For example, the N-
cyano sulfoximine sulfoxaflor (1) is an insecticide developed by
Dow AgroSciences, which exhibits a high efficiency against a
wide range of sap-feeding insects.4 In medicinal chemistry,
Bayer Pharma introduced Pan-CDK inhibitor BAY 10000394
(2), which entered clinical trials (Scheme 1).5

The physicochemical properties of sulfoximines can be fine-
tuned by functionalizing the S-bound nitrogen. In the series of
the respective products, N-cyanosulfoximines 3 play a very

particular role. They can easily be accessed by well-established
synthetic protocols,6 and their defined stability7 allows them to
be applied as useful intermediates in the preparation of other
N-functionalized sulfoximine derivatives.6 Direct applications
of N-cyanosulfoximines include the aforementioned use of
sulfoxaflor (1) as insecticide4 and various attempts to affect
enzyme actions in a range of biomedical test systems.8 To
modify the N-cyano group of 3, several 1,3-dipolar cyclo-
additions have been developed (Scheme 1) providing
sulfoximines with various N-bound heterocyclic substituents
such as 4−7 (Scheme 1).9−13 We now wondered about
reactions of N-cyanosulfoximines with another type of
cycloaddition partner: Meldrum’s acid derivatives 8.
In general, Meldrum’s acid derivatives such as 8 have widely

been used as acylation agents and precursors for acylketenes
9.14 The latter compounds are of interest because they easily
undergo [4 + 2] cycloaddition reactions.15 Accordingly, we
expected the formation of 2-sulfoximidoyl-substituited 4H-1,3-
oxazine-4-one 10aa when 8a and N-cyanosulfoximine 3a were
heated in toluene (Scheme 2). To our surprise, however, the
NMR data of the product were inconsistent with the structure
of 10aa, suggesting that sulfoximine 11aa was formed.
Although unexpected, the generation of 11aa appeared
reasonable taking into account the general reaction behavior
of Meldrum’s acid derivatives, which also involves the cleavage
of ketonic components providing dipolar intermediates 12
(Scheme 2).14,15

In order to unequivocally confirm the product structure, an
X-ray crystal structure analysis of the sulfoximine obtained
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Scheme 1. Bioactive Sulfoximines and N-Cyano Derivatives
in 1,3-Dipolar Cycloaddition Reactions
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from the reaction of 3a with 8a was performed (Scheme 2).
Again, we were caught by surprise because none of the so far
considered structures were correct. Instead of 10aa or 11aa, an
isomer of 11aa (product 13aa) representing a sulfoximine with
an N-bound 5-carbonyl-1,3-oxazine-2,4-dione group was
found.
Varying the reaction parameters revealed that 13aa could be

obtained in 99% yield when a 1:4 mixture of 3a and 8a in
toluene was kept for 2 h at 120 °C.17 Under these conditions,
other Meldrum’s acid derivatives reacted with 3a analogously
providing the corresponding products 13ab−af in yields
ranging from 28% to 86% yield (Scheme 3). In this series,
the best results were obtained with substrates 8a and 8b having
as R3 a methyl or a benzyl group, respectively. Lower yields
were observed with Meldrum’s acid derivatives 8c−f having
aryl substituents at that position. This was particularly true for

8d bearing an electron-donating ether group on the arene,
which gave 13ad in only 28%. The moderate yield of 13af
(48%) is a result of the water sensitivity of 8f, which rapidly
hydrolyzes. On a 4 mmol scale, 13aa was obtained in 90%
yield.
Next, the sulfur component was varied, and several other N-

cyanosulfoximines were applied in reactions with Meldrum’s
acid derivative 8a (Scheme 3). Again, the yields of the
corresponding products 13ba−ia spanned a wide range (from
15% to 87%). Among the S-alkyl S-aryl derivatives, S-
cyclopropyl S-phenyl sulfoximine 3b performed best providing
13ba in 87% yield. For unknown reasons, the presence of a
para substituent on the arene reduced the product yields
(13ca−ga). Distinct electronic effects were not identified. An
interesting observation was made in the reaction of 8a with p-
formyl-substituted sulfoximine 3g. In this case, we expected the
formation of 13ga, but instead compound 14 was obtained
(13% yield). Presumably, 14 stemmed from 13ga, which had
undergone a subsequent aldol reaction with in situ formed
acetone resulting from the degradation of Meldrum’s acid
derivative 8a. NMR spectroscopy suggested an exclusive
formation of the Z isomer of 14, which contrasted observations
by Bhat and co-workers, who found high E selectivities in
related organocatalytic reactions providing α,β-unsaturated
ketones.18 While the use of S,S-diphenyl sulfoximine 3h led to
13ha in 83% yield, S,S-dialkyl-substituted substrate 3i afforded
13ia in only 30% yield.
Scheme 4 shows a tentative multistep reaction sequence

converting N-cyanosulfoximines 3 and Meldrum’s acid

derivatives 8 to the observed products 13. Because none of
the depicted intermediates A−G could be isolated or detected,
the proposed transformation has to be taken with great care.
The process is initiated by elimination of acetone from 8
providing zwitterion A. (Note that A could loose CO2 leading
to acylketene 9. Then, however, CO2 would have to re-enter at
a later stage because it is part of the product.) Regioselective
addition of A on N-cyanosulfoximine 3 yields intermediate B.
Initially, we hypothesized that the formation of the N-acyl
group of 13 involved the addition of water to B (or B′) to give

Scheme 2. Reactivity of Meldrum’s Acid Derivatives,
Assumed Compounds 10aa and 11aa and Obtained Product
13aa16

Scheme 3. Substrate Scope

Scheme 4. Proposed Reaction Mechanism
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C. Results from reactions under strictly anhydrous conditions
and experiments with H2

18O, however, which did not result in
any detectable incorporation of 18O in the product (as
determined by MS analysis), made this first assumed reaction
pathway unlikely.19 Taking B as starting point, an alternative
reaction path was considered beginning with a ring-opening of
heterocycle of B leading to acylketene D. Converting D into 13
requires a significant molecular rearrangement with several C−
N bond cleavage and formation events. A potential reaction
path could involve hypothetic structures such as E and F
leading to acyl isocyanate G, which cyclized by attack of the
ketonic oxygen of G onto the acyl isocyanate group followed
by proton shift to give to the observed product 13.20

The irreversibility of the process was shown by a crossover
experiment, which also revealed that there was no
intermolecular exchange. Thus, neither 13ab nor 13ha were
detected by ESI MS upon stirring of 3h and 8b at 120 °C in
the presence 13aa.
In summary, reactions between N-cyanosulfoximines 3 and

Meldrum’s acid derivatives 8 afforded unexpected products
with 5-carbonyl-1,3-oxazine-2,4-dione groups at the sulfox-
imine nitrogen. X-ray crystal structure analysis revealed the
molecular details of a representative product. A multistep
reaction sequence starting with a [4 + 2] cycloaddition
followed by several scaffold reorientations has been proposed.
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