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AN ALKYL EQUIVALENT TO THE HECK REACTION COIWATIBLE WITH COMMON ORGANIC FUNCTIONAL GROUPS 
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Summary: A novel cobalt-mediated radical-olefin coupling reaction is described which 

regenerates the olefin functionality in the final product. The regeneration of olefin 

functionality is unique among radical-olefin couplings using simple activated alkenea. 

In this paper we report several examples cf a new alkyl-alkenyl cross coupling reaction via 

alkyl cobaloxime radical ohemistry.2*3 The two-step process involves (1) conversion of an alkyl 

halide to the oorrresponding pyridine alkyl Co"' cobaloxime [py(dmgH)2Co-R] followed by (2) 

visible light photolysis of py(dmgH)2Co-R in the presence of atyrene. The p~(dmgH)~Co-R were 

prepared according to standard literature procedures.4 Visible light photolyses were performed 

for 48 hr under an Ar atmosphere using 20 mM py(dmgH)2Co-R and 400 mM (20 eq) styrene in an 

apparatus previously described in detail.4 Reactions proceed in good yield for both steps using 

primary substrates.5*6 For secondary substrates each reaction step proceeds in modest yie1d.5'6 

For all of the reactions 'H NMR indicates exclusive formation of the E-isomer shown. 
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The overall transformation represents an alkyl equivalent to the synthetically important 

Heck reaotion, Pd-catalyzed coupling of aryl, vinyl, or ally1 halides with olefina7 The Heck 

reaction generally cannot be performed on alkyl halide substrates due to facile competing beta-H 

elimination from the transient Pd-alkyl intermediate.7 The oobaloxims-mediated reaction is 

feasible with alkyl substrates because it proceeds through an entirely different set of 

fundamental intermediates and reaction steps than in the Heck reaction. 

Since the oobaloxime-mediated cross coupling reaction proceeds via radicals, it is 

compatible with many common organic functional groups, as the variety of functional groups 

examined here demonstrates. The reaction is even compatible with potentially radical-sensitive 

functional groups such as acetal C-H (in 11 12 16 17 19 & 2& benzylic ether C-H (in s d>-_),_ 

IT, 19, a=), C-H alpha to oxygen (inI, ~,~,~,~,20, 95% EtCH solvent, 6r MeOH solvent), -- 
and allylic C-H in the products. These results demonstrate that oobaloxime-mediated alkyl- 

alkenyl cross coupling is a highly chemoselective method for the formation of carbon-carbon 

bonds without protection of common organic functional groups. 
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The course of the reaction can be rationalized as shown in the scheme. Photolysis of 

py(dmgH)$o-R results in carbon-cobalt bond homolysis, the reversibility of which makes 

py(dmgH)$o a photochemically unmasked "radical protecting group." At the styrene concentration 

employed, styrene efficiently traps the alkyl radicals in a standard radical-olefin addition 

reaction, The ensuing beta-H elimination reaction between the benzylic radical and py(dmgH)$o 

is facilitated by the phenyl groupP Subsequent fast (k - lo4 M-'s-')'~ disproportionation of 

py(dmgH).$o-H is esaentially irreversible' and drives the reaction to completion. 
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The alkyl cobaloxime mediated reaction is unique among radical-olefin coupling reactions 

because the olefin functionality is regenerated in the final product. Radical-olefin couplings 

using radicals generated via R$nH + alkyl halides and other functional groups, " NaBH4 

reduction of alkyl mercury compounds," and Vitamin B,3 catalyzed electrochemical reduction of 

alkyl halides'* all reduce the olefin functionality. For R$.n* chemistry the use of beta- 
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stannyl activated olefins regenerates the olefin functionality but has the disadvantage of 

requiring expensive, specially prepared olefin substrates, often used in several-fold excess. 
13 

In the styrene reaction reported here, it is easy to envision further transformations of the 

olefin functionality. Ozonolysis with reductive workup would generate an aldehyde functional 

group and would complete an overall oarbonylation of an alkyl halide under mild conditions. 

Ozonolysis with oxidative workup would generate a oarboxylic acid functional group and would 

complete an overall carboxylation of alkyl halides under conditions not compatible with standard 

transformations using Grignard or organolithium reagents + CO2. 
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The main significance of the synthetically useful styrene cross-coupling reactions reported 

here is as a paradigm for the development of chemoselective radical-olefin couplings with 

regeneration of olefin functionality. Explorations of the scope of such reactions, the use of 

activated olefins that incorporate synthetically useful functionality in the product, and 

applications to natural products synthesis are underway and will be reported in the near future. 
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