LABDANE DITERPENOIDS FROM HALIMIUM VISCOSUM AND H. VERTICILATUM

JULIO G. URONES, ISIDRO SANCHEZ MARCOS, DAVID DIEZ MARTIN, F. M. S. BRITO PALMA* and JESÚS M. RODILLA†

Departmento de Química Orgánica, Universidad de Salamanca, Salamanca, Spain; * Departmento de Química Orgánica, Universidad de Lisboa, Portugal; †Departmento de Química, Universidad de Evora, Portugal

(Received 10 March 1987)

Key Word Index—Halimium viscosum; H. verticilatum; Cistaceae; labdane diterpenoid acids.

Abstract—In addition to three known acids, six new diterpenoid acids with a labdane skeleton, were isolated from the acid fraction of *Halimium viscosum*. Four of them were isolated from the acid fraction of *H. verticilatum*, together with another, as their methyl derivatives.

INTRODUCTION

We have previously described the isolation from H. viscosum of three new diterpenoid acids with a labdane skeleton containing a C-17 carboxyl group and having two double bonds at C-7 and C-13 [1]. In the present report we describe the isolation from H. viscosum of six new diterpenoid acids, two with an unsaturated chain and four of them with a saturated chain. From H. verticilatum, Corroios (Portugal) has been isolated five diterpenoid acids, four of them also present in the acid fraction of H. viscosum.

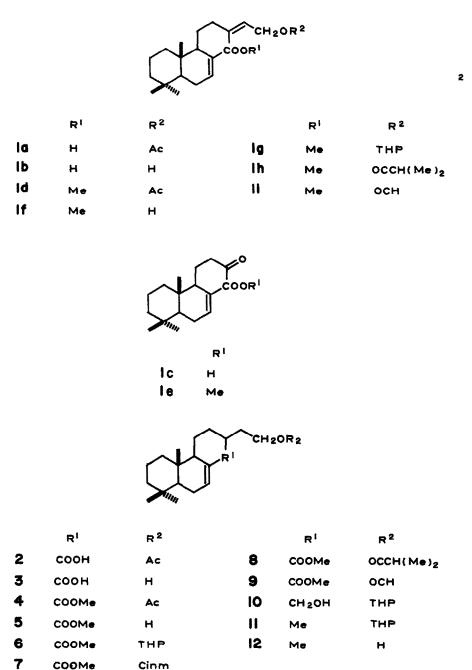
RESULTS AND DISCUSSION

The sodium hydroxide soluble part of the hexane extract of H. viscosum, Valparaiso (Zamora, Spain) was separated by column chromatography into three major fractions, I (24%), II (8%) and III (49%). A portion of fraction I, was treated with diazomethane and the resulting mixture of methyl esters was chromatographed on silica gel, to yield three mixtures (85/15) of two components 1h/8 (5%), 1i/9 (5%) and 1d/4 (85%). Column chromatography of the methyl esters corresponding to fraction II gave 1e as the principal component (85%) [1]. Fraction III contained a mixture (85/15) of hydroxy acids 1b/3. This mixture can be obtained from 1h/8, 1i/9 and 1d/4 by alkaline hydrolysis. Only a small quantity of 2 was isolated from fraction I by column chromatography. Using the same method it was not possible to separate the methyl esters mixtures 1d/4 and 1f/5. The hydroxyester mixture 1f/5 was resolved by transformation into the tetrahydropyranyl derivatives 1g and 6 that can be separated by column chromatography. The acid hydrolysis of 6 gave 5, which by acetylation yields 4, which can also be obtained by treatment of 2 with CH₂N₂.

Specimens of *H. verticilatum* were collected at Corroios (Portugal). The sodium hydroxide-soluble part of the hexane extract, after methylation, was separated into three fractions from which five methyl esters (4, 5, 7, 8, 9) were obtained by column chromatography.

Compounds 8 and 9 were also isolated from fraction I of *H. viscosum* as mixtures 1h/8 and 1i/9, which could not

be separated by column chromatography. Compounds 1h and 8 were obtained from 1f and 5 respectively, by treatment with isobutyryl chloride [2]. Treatment of 5 with formic acid [3] gave 9.


Compound 5 was an α,β -unsaturated hydroxyester (IR: 3420, 1725 and 1640 cm⁻¹). Its ¹³C NMR spectrum showed signals for 21 carbons: five Me, eight CH₂, four CH and four completely substituted carbons. Its ¹H NMR spectrum showed signals corresponding to the following groups: -CH=CCOOMe (δ 6.64, 1H, m; 3.70, 3H, s), -CH₂CH₂OH (3.69, 2H, m); Me-CH(0.89, 3H, d) and three MeC (0.91, 0.87 and 0.82).

The mass spectrum of 5 exhibited the molecular ion at m/z 336 (C₂₁H₃₆O₃) corresponding to a bicyclic diterpene with one double bond, a hydroxyl group and a meth-oxycarbonyl group. The ion of m/z 235 was formed by loss of a side chain. The methoxycarbonyl function must be situated at C-8 conjugated with a trisubstituted double bond at C-7 [1]. With respect to the natural compounds 2 and 3 they have the structure of 15-hydroxy-7-labden-17-oic acid and 15-acetoxy-7-labden-17-oic acid, respectively, which is shown upon transforming their carboxylic function into a methyl group, thereby obtaining cativol (12) [4].

Treatment of 3 with diacetyl ether-pyridine and diazomethane gave 2 and 5, respectively. Compound 6 was transformed into 10 by reduction with lithium aluminium hydride. Treatment of 10 with CIMs and reduction of the reaction product gave 11 which on acid hydrolysis produced 12 [5].

Compound 7 was an α,β -unsaturated diester with an aromatic ring (IR: 1710, 1640 and 1500 cm⁻¹). Its ¹³C NMR spectrum showed signals for 30 carbons: five Me, eight CH₂, eleven CH (eight sp²), and six completely substituted carbons. Its ¹H NMR spectrum showed signals corresponding to the following groups: -CH = CCOOMe ($\delta 6.62$, 1H, m; 3.70, 3H, s), -CH₂CH₂OOC (4.24, 2H, m) and -OOC-CH=CH-Ph (7.67, 1H, d; 6.44, 1H, d).

Alkaline hydrolysis of 7 and treatment with diazomethane of the hydrolysis product yielded 5 and methyl cinnamate (authentic sample); therefore 7 had the structure methyl 15-cinnamoyloxy-7-labden-17-oate.

EXPERIMENTAL

Mps: uncorr, ¹H NMR: 200 MHz, CDCl₃, TMS as int. standard; ¹³C NMR: 50.3 MHz.

Extraction and isolation. The aerial part (0.86 kg) of H. verticilatum collected in Corroios (Portugal) was dried and extracted with n-hexane in a Soxhlet for 24 hr. The extract (21.2 g) was dewaxed with MeOH (21.1 %) and then extracted with 10% Na₂CO₃ (12%) and 4% NaOH (43%). The neutral fraction represented 22% of the original extract. One portion of the NaOH-soluble acid fraction (2.0 g) of the hexane extract of H. verticilatum, after treatment with CH₂N₂ was separated by CC into three fractions, I (n-hexane-Et₂O, 8:2) (10%), II (n-hexane-Et₂O, 1:1) (50%) and III (n-hexane-Et₂O, 3:7) (40%).

Fraction I (0.2 g) was resolved by CC. Elution with *n*-hexane-Et₂O (9:1) gave 4 (12 mg), 7 (20 mg) and 8 (10 mg). Fraction II (1.0 g) with the same method gave 5 (400 mg) and 9 (20 mg).

The extraction of the aerial part (1 kg) of *H. viscosum* collected in Valparaiso (Zamora, Spain) has been described elsewhere [1].

15-Acetoxy-7-labden-17-oic acid (2). Fraction I (1 g) of H. viscosum was resolved by CC. Elution with n-hexane-Et₂O (3:2) gave 2 (30 mg). Colourless oil. $[\alpha]_{22}^{22} - 36.6^{\circ}$ (CHCl₃, c 1.10); IR $v_{\text{max}}^{\text{film}}$ cm⁻¹: 3500-2500, 1750, 1700, 1650, 1240, 1050,

	Labdane	diterpenoids	from	Halimium	species
--	---------	--------------	------	----------	---------

С	1 h	2	3	4	5	6	7	8	9	10	11	12
1	39.52	39.59	39.61	39.72	39.55	39.70	39.73	39.72	39.52	39.20	39.98	39.81
2	18.60	18.35	18.61	18.62	18.54	18.60	18.63	18.63	18.60	18.87	18.92	18.92
3	42.13	42.05	42.16	42.15	42.08	42.16	42.16	42.16	42.13	42.40	42.48	42.25
ţ	32.85	32.76	32.84	32.85	32.69	32.78	32.84	32.84	32.85	33.00	33.02	33.02
5	49.56	49.44	49.56	49.62	49.53	49.64	49.63	49.64	49.56	50.09	50.36	50.41
5	24.01	24.11	24.23	23.96	23.88	23.90	23.96	23.97	24.01	23.76	23.92	23.93
7	137.56	139.38	139.20	136.76	136.59	136.25	136.66	136.79	137.05	125.16	122.05	122.17
3	135.40	134.79	134.50	135.62	135.55	135.76	135.63	135.58	135.40	139.63	135.65	135.92
)	50.80	50.94	51.35	51.18	51.10	51.04	51.22	51.22	50.80	52.77	55.55	55.62
10	36.99	36.92	36.99	37.01	36.88	36.98	37.02	37.03	36.99	36.87	37.00	37.04
1	26.89	25.39	25.96	25.60	25.61	25.53	25.62	25.62	26.89	24.37	24.44	24.97
2	41.09	38.17	38.59	38.25	38.33	38.38	38.26	38.22	38.29	38.57	39.31	39.37
13	143.25	30.82	30.68	30.68	30.56	30.80	31.04	30.86	29 .71	30.99	31.02	30.62
14	118.36	35.37	39.61	35.41	39.68	36.59	35.57	35.32	35.51	36.53	36.58	40.02
15	62.13	63.04	60.97	63.14	60.62	62.17	63.19	62.60	62.13	62.87	62.32	61.35
16	16.45	19.46	19.94	19.52	19.70	19.71	19.61	19.41	19.55	20.04	20.00	19.84
17	169.70	173.68	173.50	169.82	169.68	169.66	169.73	169.75	169.70	65.72	22.18	22.10
18	33.16	33.08	33.16	33.20	33.09	33.15	33.20	33.19	33.16	33.17	33.23	33.20
19	21.96	21.88	21.26	22.00	21.88	21.95	22.00	21.99	21.96	21.92	21.90	21.87
20	14.46	14.41	14.43	14.47	14.32	14.40	14.48	14.45	14.46	13.68	13.63	13.65
COOMe	51.28			51.25	51.25	51.26	51.22	51.37	51.28			
Me-COO		20.78		21.05								
Me-COO		171.03		171.16								
Me₂CH-												
coo	51.23								51.23			
Me ₂ CH-												
coo	19.04								19.04			
Me ₂ CH-												
coo	169.70								169.70			
HCOO								161.11				
l'							169.73					
2'						98.72	136.66			99.40	99.02	
- V						31.06	144.49			33.17	30.88	
¥′						25.58	134.66			25.58	25.61	
5′						19.06	128.88			19.79	19.73	
5'						66.02	128.06			65.97	66.13	
, 7'						00.04	130.17			00.07	00.15	
, 3'							128.06					
9′							128.88					

Table 1. ¹³C NMR data of compounds 1h and 2-12* (50.3 MHz, CDCl₃, TMS as internal standard)

*Assignments based on DEPT experiments and, particularly in the case of 5, on C/H(HCCORR) two dimensional correlations.

870; ¹H NMR: $\delta 6.80$ (1H, m, H-7), 3.90 (2H, m, H-15), 1.90 (3H, s) 0.83 (3H, d, J = 7.0 Hz, Me-16), 0.85, 0.80, 0.79 (3H, each s, Me-19, Me-18 and Me-20, respectively). Treatment of 2 with CH₂N₂ gave 4 and the alkaline hydrolysis (30 mg, 2 ml NaOH-MeOH 10%) yielded 3.

Methyl 15-acetoxy-7-labden-17-oate (4). Colourless oil. $[\alpha]_{D}^{22}$ - 84.5° (CHCl₃, c 1.18). IR v^{film}_{max} 1750, 1730, 1650, 1250; ¹H NMR: $\delta 6.62$ (1H, m, H-7), 4.09 (2H, m, H-14), 3.70 (3H, s), 2.04 (3H, s), 0.91, 0.87, 0.82 (3H, each s, Me-19, Me-18 and Me-20, respectively), 0.88 (3H, d, J = 7.7 Hz, Me-16).

15-Hydroxy-7-labden-17-oic acid (3). Colourless oil. $[\alpha]_{D^2}^{2D}$ - 24.1° (CHCl₃, c 1.31); IR ν^{fimat}_{max} cm⁻¹: 3500-2600, 1700, 1260; ¹H NMR: δ6.82 (1H, m, H-7), 3.67 (2H, m, H-15), 0.88 (3H, d, J = 7.3 Hz, Me-16), 0.90, 0.87, 0.82 (3H, each s, Me-19 Me-18 and Me-20, respectively)

Methyl 15-hydroxy-7-labden-17-oate (5). To 5.0 g of methyl

esters mixture 1f/5 dissolved in 15 ml dry C₆H₆ were added 2 ml dihydropyrane and 0.18 g TsOH. After shaking the mixture at room temp. 140 mg K₂CO₃ were added and after 30 min the mixture was filtered and evapd to obtain 5.9 g of reaction product which on CC gave 4.2 g (*n*-hexane-Et₂O, 9:1) 1g and 0.5 g of 6. Colourless oil. IR $v_{\text{max}}^{\text{film}}$ cm⁻¹: 1730, 1655, 1270, 1250, 1080, 980, 910, 870; ¹H NMR: $\delta 6.57$ (1H, *m*, H-7), 4.53 (1H, *m*, H-2'), 3.77 (2H, *m*), 3.66 (3H, s), 3.40 (2H, *m*), 0.85 (3H, d, J = 7.7 Hz, Me-16), 0.87, 0.83, 0.78 (3H, each s, Me-19, Me-18 and Me-20, respectively).

Hydrolysis of compound 6. To 50 mg of 6, dissolved in 3 ml MeOH, were added 2.5 mg of TsOH and the mixture was shaken at room temp for 1 hr. Following this, the solvent was evapd, Et₂O was added and the product washed with NaHCO₃ and H₂O. After evaporating off the solvent, 35 mg of 5 was obtained. Colourless oil. $[\alpha]_{D}^{22} - 51.0^{\circ}$ (CHCl₃, c1.27); UV λ_{max}^{EEOH} nm (log

ε): 2.16 (2.00). IR v_{max}^{flin} cm⁻¹: 3420, 1720, 1640, 1260; ¹H NMR: δ6.63 (1H, m, H-7), 3.71 (3H, s), 3.69 (2H, m, H-15), 0.89 (3H, d, J = 7.5 Hz, Me-16), 0.91, 0.87, 0.83 (3H, each s, Me-19, Me-18 and Me-20, respectively). EIMS 70 eV, m/z (rel. int): 336 [M]⁺ (2), 305 (25), 290 (8), 235 (18), 176 (35), 124 (11), 109 (100), 105 (17), 43 (21), 41 (18).

Reduction of 6 with LiAlH₄. To 320 mg of 6 dissolved in 3 ml Et₂O, were added 15 mg LiAlH₄. The reaction mixture was kept at room temp for 1 hr. The usual procedure gave 283 mg of reduction product which on silica gel CC (*n*-hexane-Et₂O, 9:1) yielded 10 (212 mg). Colourless oil. IR v_{max}^{flim} cm⁻¹: 3420, 1330, 1210, 1140, 1040, 910, 870. ¹H NMR: δ 5.74 (1H, m, H-7), 4.54 (1H, m, H-2'), 4.02 (2H, m), 3.85 (2H, m), 3.50 (2H, m), 0.91 (3H, d, J = 6.8 Hz, Me-16), 0.87, 0.86, 0.72 (3H, each s, Me-19, Me-18 and Me-20, respectively).

Preparation and reduction of the mesylate. Et₃N (0.11 ml) was added to 212 mg 10 in 3 ml CH₂Cl₂ and the mixture left to cool between -10° and 0° . MeSO₂Cl (0.06 ml) was added and the product kept at room temp. for 1.5 hr. It was then washed with ice-water, 2 M HCl and then again with H₂O. The reaction product (272 mg) was dissolved in Et₂O (3 ml) and treated with 10 mg LiAlH₄. The mixture was shaken for 1 hr. The usual procedure gave 200 mg of reduction production which on silica gel CC (*n*-hexane-Et₂O, 49:1) gave 60 mg 11. Colourless oil. IR $v_{max}^{\rm imm}$ cm⁻¹: 1330, 1210, 1160, 1140, 1110, 940, 840; ¹H NMR: δ 5.35 (1H, *m*, H-7), 4.57 (1H, *m*, H-2'), 3.82 (2H, *m*), 3.44 (2H, *m*), 1.66 (3H, *s*, Me-17), 0.92 (3H, *d*, *J* = 6.2 Hz, Me-16), 0.87, 0.85, 0.75 (3H, each *s*, Me-19, Me-18 and Me-20, respectively).

Hydrolysis of compound 11. p-Toluensulphonic acid (2.5 mg) was added to 41 mg 11 dissolved in 2.5 ml MeOH and the mixture shaken for 4 hr at room temp. The usual procedure gave 20 mg 12. Colourless oil. $[\alpha]_D^{22} + 1.4^\circ$ (CHCl₃, c 0.85); IR $v_{max}^{\dim} \text{cm}^{-1}$: 3360, 1080, 980, 840. ¹H NMR: δ 5.39 (1H, m, H-7), 3.68 (2H, m, H-15), 1.67 (3H, s, Me-17), 0.93 (3H, d, J = 6.2 Hz, Me-16), 0.88, 0.85, 0.76 (3H, each s, Me-19, Me-18 and Me-20, respectively).

Methyl 15-cinnamoyloxy-7-labden-17-oate (7). Colourless oil. $[\alpha]_D^{22} - 33.5^{\circ}$ (CHCl₃, c 1.30); IR ν_{max}^{film} cm⁻¹: 1710, 1640, 1500, 1310, 1240, 1160, 980. ¹H NMR: δ 7.67 (1H, d, J = 16 Hz, H-3'), 7.52 (2H, m), 7.36 (3H, m), 6.40 (1H, d, J = 16 Hz, H-2'), 6.62 (1H, m, H-7), 4.24 (2H, m, H-15), 3.70 (3H, s), 0.92 (3H, d, J = 6.4 Hz, Me-16), 0.88, 0.84, 0.80 (3H, each s, Me-19, Me-18 and Me-20, respectively). Methyl 15-isobutyloxy-7-labden-17-oate (8). Colourless oil. $[\alpha]_{D}^{22}-28.4^{\circ}$ (CHCl₃, c 0.74); IR v $\frac{\text{finar}}{\text{max}}$ cm⁻¹: 1750, 1740, 1660, 1250, 1080; ¹H NMR: $\delta 6.61$ (1H, m, H-7), 4.07 (2H, m, H-15), 3.67 (3H, s), 2.50 (1H, h, J = 6.8 Hz, H-2'), 1.11 (6H, d, J = 6.8 Hz, H-3'), 0.92 (3H, d, J = 6.4 Hz, Me-16), 0.88, 0.84, 0.80 (3H, each s Me-19, Me-18 and Me-20, respectively).

Compound 5 (90 mg) dissolved in 0.5 ml dry pyridine were cooled to 0°. Isobutyryl chloride (0.2 ml) was added and after 1 hr the mixture was kept at room temp for 8 hr. Et₂O was added and it was then washed with 2 M HCl, 5% NaCO₃H and H₂O. Evapn of the solvent after drying over Na₂SO₄ gave 110 mg 8.

Methyl 15-isobutyloxy-7,13E-labdadien-17-oate (1h). Treatment of 1.0 g of fraction I of *H. viscosum*, with CH₂N₂, gave 1.0 g of a mixture of Me esters, which was resolved by CC. Elution with *n*-hexane-Et₂O (9:1), gave 1h/8 (50 mg), 1i/9 (30 mg) and 1d/4 (800 mg). By a similar treatment as described before 100 mg of 1f [1] gave 1h (100 mg). IR $v_{\text{film}}^{\text{film}}$ cm⁻¹: 1750, 1740, 1660,1250, 1080; ¹H NMR: $\delta 6.61$ (1H, *m*, H-7), 5.29 (1H, *t*, *J* = 7.3 Hz, H-14), 4.54 (2H, *d*, *J* = 7.3 Hz, H-15), 3.68 (3H, s), 2.52 (1H, *h*, *J* = 7.1 Hz, H-2'), 1.65 (3H, s, Me-16), 1.15 (6H, *d*, *J* = 7.1 Hz, CH(Me)₂), 0.88, 0.84, 0.80, (3H, each s, Me-19, Me-18 and Me-20, respectively).

Methyl 15-formyloxy-7-labden-17-oate (9). Colourless oil. $[\alpha]_D^{22} - 56.5^{\circ}$ (CHCl₃, c 1.21); IR $v_{\rm max}^{\rm film}$ cm⁻¹: 1745, 1650, 1260, 1200, 1090, 800. ¹H NMR: δ 8.04 (1H, s, OOCH), 6.63 (1H, m, H-7), 4.19 (2H, m, H-15), 3.70 (3H, s), 0.85 (3H, d, J = 6.7 Hz, Me-16), 0.90, 0.86, 0.82 (3H, each s Me-19, Me-18 and Me-20, respectively).

Formylation of Compound 5. Compound 5 (50 mg) was dissolved in HCOOH (0.5 ml) and kept for 1 min, following this it was extracted with Et_2O , then washed with H_2O and dried over Na_2SO_4 . Evaporation of the solvent gave 9 (50 mg).

REFERENCES

- De Pascual Teresa, J., Urones, J. G., Marcos, I. S., Diez Martin, D. and Alvarez, V. M. (1986) *Phytochemistry* 25, 711.
- 2. Ross, M. J. and Rickborn, B. (1971) Org. Synthesis 51, 11.
- 3. Cortese, F. and Bauman, L. (1935) J. Am. Chem. Soc. 57, 1393.
- 4. Zeiss, H. H. and Grant, F. W. (1957) J. Am. Chem. Soc. 79,
- 1201.
 Corey, E. J., Niwa, H. and Knolle, J. (1978), J. Am. Chem. Soc 100, 1942.