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Abstract: An efficient chiral ligand, (1R,5R)-1-(1¢-dimethylamino-
ethyl)-2-isopropylidene-5-methylcyclohexanol, has been devel-
oped for the enantioselective addition of diethylzinc to some
prochiral aldehydes to afford S-alcohols. The overall conversion
rate was 80–98% with excellent enantiomeric excess (79–98%).
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Asymmetric addition of diethyl-, diphenyl-, and dialky-
nylzinc using a catalytic amount of chiral inductor is one
of the most active and fascinating research areas for enan-
tioselective additions to prochiral aldehydes.1 To achieve
this goal, diverse chiral ligand structures such as b-amino
alcohols,2 aminothiols,3 amines,4 aminonaphthols,5 pyr-
idyl alcohols,6 o-hydroxybenzyl amines,7 BINOL,8 and
ligands derived from natural products have been widely
been exploited,9 but the enantiomeric excess is some
times disappointing. Metal complexes10 have also been
exploited to achieve this goal.

In our strategy for development of new effective chiral
ligands, we have performed an intermolecular electroduc-
tive coupling11 of (R)-(+)-2-isopropylidene-5-methylcy-
clohexanone [(R)-(+)-pulegone] with acetonitrile in the
ionic liquid 1-butyl-3-methylimidazolium tetrafluorobo-
rate propan-2-ol12 at a smooth copper cathode. A constant
current (0.1 A) was passed corresponding to 1.1 F mol–1

charge transfer; wherein, three products, (1R,5R)-1-(1-hy-
droxy-2-isopropylidene-5-methylcyclohexyl)ethanone (1a),
(1S,5R)-1-(1-hydroxy-2-isopropylidene-5-methylcyclo-
hexyl)ethanone (1b), and 2-isopropylidene-5-methylcy-
clohexanol (1c) were formed (Scheme 1).

The products were separated employing a swollen tri-
acetyl cellulose column prepared by the reported meth-
od.13 The elution was accomplished by ethanol, when

compound 1a was obtained first followed by 1b and 1c in
70%, 20% and 8% yield, respectively. The major stereo-
isomer 1a upon treatment with O-methyloxime hydro-
chloride in ethanol and subsequent reduction of oximated
product by lithium aluminium hydride afforded (1R,5R)-
1-(1¢-aminoethyl)-2-isopropylidene-5-methylcyclohexanol
(1d) as the sole product in 90% yield. This compound
upon N-methylation with methyl iodide (2 mol) furnished
the desired chiral ligand, (1R,5R)-1-(1¢-dimethylaminoet-
hyl)-2-isopropylidene-5-methylcyclohexanol (1e)14 in
95% yield (Scheme 2). The chiral ligand obtained, as
above, was purified over a silica gel G column by eluting
with hexane–ethyl acetate (8:2) and characterized, unam-
biguously, by elemental analysis, IR, 1H NMR, and 13C
NMR. It was employed as chiral inductor for the addition
of diethylzinc to a range of prochiral aldehydes.15

Scheme 2

In order to evaluate the optimum concentration of this
new chiral ligand, we have studied the addition of dieth-
ylzinc to benzaldehyde at 3, 5, 8, and 10 mol% concentra-
tion. The product upon hydrolysis gave (S)-phenylpropan-
1-ol (4a) in 85–90% yield with 87%, 93%, 90%, and 89%
enantiomeric excess. These data clearly suggest that 5
mol% concentration of the chiral ligand 1e is best suited
for this reaction (Scheme 3).
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Scheme 3

Eight prochiral aldehydes 4a–h were studied, and the cor-
responding products have been assigned S-configuration
by comparison to the known values in the literature and by
derivatization with Eu(hfc)3 and recording 1H NMR spec-
tra (Table 1). All the products 4a–h have been character-
ized by IR, 1H NMR, 13C NMR, and elemental analyses.
These data for the representative compounds 4a and 4e
have been presented.21

The observation of the data presented in Table 1 reveals
that, with the new chiral ligand 1e, the overall conversion
rate is 80–98% with excellent ee ranging from 79–98%. o-
Methoxybenzaldehyde afforded lower enantioselectivity
than its para isomer, probably due to the steric effect ex-
erted by the ortho substitutent. Amongst the prochiral al-
dehydes examined, aliphatic aldehydes gave best
enantiomeric excesses with the exception of cyclohexyl
carboxaldehye which exhibited the lowest enantioselec-
tivity.

In conclusion, we have demonstrated that the chiral ligand
1e gave excellent enantiomeric excesses for the addition
for diethylzinc to a range of prochiral aldehydes 4a–h.
The work on the synthesis of new chiral ligands derived
from (+)-dihydrocarvone, (–)-menthone, and (+)-cam-
phor is under investigation and results will be addressed in
future in the form of full paper.
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Table 1 Addition of Diethylzinc to Aldehydes Using Ligand 1e (5 mol%)

Entry Aldehyde 2 Product 4 Conversion (%) Optical rotation ee (%) Config.

1 PhCHO 4a 90 [a]D
25 –42.10 (c 5.3, CHCl3) 93a S
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25 –5.80 (c 3.2, CHCl3) 88b S
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7 PhCH2CH2CHO 4g 94 [a]D
25 +26.26 (c 5.0, EtOH) 98g S

8 C6H11CHO 4h 80 [a]D
24 –6.32 (neat) 79f S

a [a]D –45.45 (c 5.15, CHCl3).
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b [a]D –6.6 (c 3.2, CHCl3).
17
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e [a]D –9.6 (c 8.3, CHCl3).
20

f The e was determined by 1H NMR analysis of the derived acetates using Eu(hfc)3.
g [a]D –26.8 (C, 5.0, EtOH).17
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