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Abstract: Sonogashira couplings of 2-iodo enol ethers or ynol ethers
provide enynes which undergo semihydrogenation to afford 4-alkyl-1,3-
dienol ethers. (1Z, 3E), (1E, 3Z) and (1Z, 3Z)-4-alkyl-1,3-dienol ethers
are accessible using this strategy.

As part of a synthetic program targeting peroxide-containing natural
products, we required a stereoselective preparation of chiral dienol
ethers as substrates for stereoselective addition of singlet oxygen (eq. 1)

Equation 1

However, a review of the literature revealed surprisingly few general
methods for synthesis of alkyl dienol ethers.1-3 The Sonogashira
(Stephens-Castro) coupling reaction is a convenient Pd(0)/Cu(I)
mediated process which has been used for the formation of numerous
enynes.4 Herein we report the application of the Sonogashira coupling
towards the stereoselective synthesis of (1Z, 3E), (1E, 3Z) and (1Z, 3Z)-
4-alkyl-1,3-dienol ethers. As illustrated in eq. 2, our strategy relies upon
a Sonogashira coupling followed by selective reduction of the alkyne
for formation of the diene functionality.

Equation 2

Alkynol ethers 1a and 1b were readily synthesized from L-menthol and
(R,S)-trans-2-phenylcyclohexanol using the method of Greene5

(Scheme 1). Alternatively, these alkynol ethers could be converted to
(E)-2-iodo enol ethers 2 by hydrozirconation-iodination.6

Hydrostannylation of the alkynyl ethers selectively produced
(Z)-tributylstannyl enol ethers 3 which underwent iodination to produce
the (Z)-2-iodo enol ethers 4 (Scheme 1).7

Coupling of 1 with (Z)- or (E)-1-iodohexene8,9 furnished enynol ethers
5 and 6 in a stereospecific fashion (Table 1).10 Coupling of the (E)- and
(Z)-iodo enol ethers 2 and 4 with 1-hexyne furnished enynol ethers 7
and 8 (Scheme 2 and Table 1).

Semihydrogenation11 of the enynes with P-2 Nickel selectively
introduced a (Z)-alkene (Table 1). The dienol ethers were susceptible to
overreduction to enol ethers under the semihydrogenation conditions,
but overreduction could be minimized with careful monitoring of
reaction progress. Attempted hydride reduction of the alkyne to the (E)-
alkene12 was unsuccessful, thus limiting the scope of this strategy to the
preparation of dienol ethers containing at least one (Z)-olefin.

Scheme 1

Scheme 2

Yamanaka13-15 and Suginome16 have described the palladium catalyzed
coupling of aryl and heteroaryl halides with (Z)-1-ethoxy-2-
stannylethene or (E)-tris(2-ethoxyethenyl)borane; however, attempts to
perform a direct synthesis of the dienol ether through Stille coupling
between stannylenol ether 3 and iodohexene were unsuccessful under a
variety of conditions (eq. 3), as were attempts to perform Suzuki
couplings via the corresponding enol boronate.17

Equation 3

In summary, we have demonstrated that the use of the Sonagashira
coupling permits rapid access to three of the four possible geometric
isomers of dienol ethers. Application of this methodology for peroxide
synthesis will be described in due course. 
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