

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry 14 (2006) 5370-5383

Bioorganic & Medicinal Chemistry

Novel potent and selective calcium-release-activated calcium (CRAC) channel inhibitors. Part 2: Synthesis and inhibitory activity of aryl-3-trifluoromethylpyrazoles $\stackrel{\leftrightarrow}{\sim}$

Yasuhiro Yonetoku,* Hirokazu Kubota, Yoshinori Okamoto, Jun Ishikawa, Makoto Takeuchi, Mitsuaki Ohta and Shin-ichi Tsukamoto

Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan

Received 16 February 2006; revised 20 March 2006; accepted 21 March 2006 Available online 17 April 2006

Abstract—To identify potent and selective calcium-release-activated calcium (CRAC) channel inhibitors, we examined the structure–activity relationships of the pyrazole and thiophene moieties in compound 4. Compound 25b was found to exhibit highly potent and selective inhibitory activity for CRAC channels and further modifications of the pyrazole and benzoyl moieties of compound 25b produced compound 29. These compounds were potent inhibitors of IL-2 production in vitro and also acted as inhibitors in pharmacological models of diseases resulting from T-lymphocyte activation, after oral administration. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

 Ca^{2+} is known to regulate many physiological activities by controlling various cellular functions, and the intracellular Ca^{2+} concentration ($[Ca^{2+}]_i$) is precisely regulated by plasmalemmal Ca^{2+} channels. These channels can be divided into two broad categories depending on their activation mechanisms. Ca^{2+} channels modulated by membrane potential are called voltage-operated calcium (VOC) channels, and have been well studied with respect to their distribution and cellular functions.² VOC channel inhibitors have been used for the treatment of hypertension and brain dysfunction. In contrast, inflammatory cells have Ca^{2+} channels that are regulated by signal transduction pathways activated by other receptors.^{3a-d}

In activated T-cells, the stimulation of cell surface receptors results in a transient increase in $[Ca^{2+}]_i$ as a result of Ca^{2+} efflux from inositol triphosphate-sensitive Ca^{2+} stores, and subsequently a sustained Ca^{2+} influx occurs

through the calcium-release-activated calcium (CRAC) channels.^{3e-o} This prolonged high $[Ca^{2+}]_i$ has been shown to activate cytosolic signal transduction, inducing the production of lipid mediators (e.g., LTD₄), cytokines (e.g., interleukin-2 (IL-2)), and matrix metalloproteases, which are known to be involved in the pathogenic processes in inflammation and autoimmune diseases. Thus, CRAC channel inhibitors may be useful for the treatment of diseases, such as asthma and rheumatoid arthritis, in which inflammatory cells are activated.⁴ Since inhibition of VOC channels is known to affect the nervous and cardiovascular systems, compounds that inhibit CRAC channels will need to be sufficiently selective in their action, when compared to VOC channels, to be therapeutically useful and avoid serious side effects.

Recently, several compounds, including SK&F 96365 (1),⁵ econazole (2),⁶ and L-651582 (3,⁷ Fig. 1), have been reported to inhibit CRAC channels. However, their potency and selectivity have not been adequate for them to be candidates for anti-inflammatory drugs. Screens of our chemical library for potent and selective CRAC channel inhibitors identified 4'-chloro-5-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxanilide (4) as a lead compound. Subsequent modification of the 4-chlorophenyl moiety of compound 4 produced 2'-chloro-5-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxanilide (5) which was a highly potent

Keywords: Anti-inflammatory; Channel inhibitors; Ca^{2+} release-activated Ca^{2+} channel; CRAC channel; Interleukin-2; X-ray diffraction studies.

[☆] See Ref. 1.

^{*} Corresponding author. Tel.: +81 029 847 8611; fax: +81 029 847 8313; e-mail: yasuhiro.yonetoku@jp.astellas.com

^{0968-0896/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2006.03.039

Figure 1. Structures of SK&F 96365 (1), econazole (2), L-651582 (3), and compounds 4 and 5.

and selective CRAC channel inhibitor with an IC₅₀ value of 0.050 μ M and a selectivity index of more than 200 (Fig. 1).^{1,8} In an attempt to further examine the details

Scheme 1. Reagents: (a) MeI, K₂CO₃, DMF.

of the structure–activity relationships (SARs) of compound **4**, we substituted its thiophene and (1-methyl-3-trifluoromethyl)pyrazole groups, and in this paper, we describe the preparation of a series of aryl-3-trifluoromethylpyrazoles and the SARs for these moieties.

2. Chemistry

Synthetic routes for the arylcarboxylic acid intermediates 12a-i are shown in Schemes 1-4. Pyrazoles 6a and **6b** were subjected to N-methylation with methyl iodide to give the 1-methylpyrazoles 7a and 7b, respectively, which were accompanied by the corresponding regioisomers (Scheme 1). Other 3-trifluoromethylpyrazoles 7c-f were obtained by trifluoroacetylation of the ketone derivatives 9c-f with ethyl trifluoroacetate or trifluoroacetic anhydride in the presence of bases, followed by cyclization of the diones **10c–f** with hydrazines (Scheme 2). This cyclization proceeded regioselectively when methylhydrazine was used and gave the corresponding pyrazoles 7e and 7f. Compounds 7a-c, 7e, and 7f were treated with *n*-butyllithium in tetrahydrofuran at -78 °C, and treatment of the resultant lithium salts with ethyl chloroformate gave the esters 11a-c, 11e, and 11f (Scheme 3). Lithiation of compound 7d proceeded at 0 °C, and the resultant dianion was converted into the ester 11d by treatment with ethyl chloroformate and then aqueous NaHCO₃. Compound 11d was alkylated with ethyl iodide and isopropyl iodide to give the 1-alkylpyrazoles 11g and 11h, respectively. The esters 11a, 11b, and 11d-h obtained in this way were

Scheme 2. Reagents: (a) with $R^2 = Me$: LDA, THF, then (CF₃CO)₂O, with $R^2 = H$: CF₃CO₂Et, NaOMe, MeOH; (b) with $R^1 = Me$: MeNHNH₂, AcOH, EtOH, with $R^1 = H$: NH₂NH₂·HCl, EtOH.

Scheme 3. Reagents and condition: (a) with $R_1 = Me: n$ -BuLi, THF, $-78 \degree C$, then $ClCO_2Et$, with $R_1 = H:$ (i) *n*-BuLi, THF, $0 \degree C$, then $ClCO_2Et$, (ii) NaHCO₃(aq), EtOH; (b) NaOH(aq), EtOH; (c) i—*n*-BuLi, THF, $0 \degree C$, then $ClCO_2Et$, ii—NaOH(aq), EtOH; (d) EtI, K_2CO_3 , DMF; (e) *i*-PrI, K_2CO_3 , DMF.

Scheme 4. Reagents: (a) MeNHNH₂, EtOH; (b) KMnO₄, H₂O.

hydrolyzed with aqueous NaOH to form the acids 12a, 12b, and 12d–h. Lithiation of compound 7c and coupling with ethyl chloroformate, followed by hydrolysis, directly gave the corresponding acid 12c. The benzoic acid 12i was obtained by regioselective cyclization of the dione 13^9 with methylhydrazine, followed by oxidation of the resultant pyrazole 14 with KMnO₄ (Scheme 4).

As shown in Scheme 5, compound 12 was mixed with the corresponding aniline 15 in the presence of 1-ethyl-3-dimethylaminopropyl carbodiimide hydrochloride (EDC \cdot HCl) to produce the desired carboxanilide 16 (Method A). Compound 16 was also synthesized by treating compound 12 with (COCl)₂, followed by coupling with the corresponding aniline 15 in the presence of triethylamine, pyridine, or aqueous NaHCO₃ (Method B). The 1,3-dimethyl- and 1-benzylpyrazole derivatives 17c and 17d were obtained by alkylation of compounds 16c and 16d, respectively, in the presence of K_2CO_3 (Scheme 6). The structure of compound 17c was determined as illustrated in Scheme 6, using the nuclear Overhauser effect (NOE), observed between the protons of the N-methyl group (3.91 ppm) and the thiophene (7.50 ppm). In the same way, the NOE between protons of the benzyl group (5.53 ppm) and the

Ar-COOH

thiophene (7.01 ppm) in compound **17d** corroborated the structure of this compound shown in Scheme 6.

As shown in Scheme 7, the anilinomethyl derivative 20 was obtained by reductive amination of the aldehyde 19 with 4-chloroaniline in the presence of sodium triacetoxyborohydride (NaBH(OAc)₃). The reversed amide 22 was prepared by Curtius rearrangement of the acid 12j, followed by coupling of the resultant amine 21 with 4-chlorobenzoyl chloride (Scheme 8). As shown in Scheme 9, the acetophenones $23a-c^{10}$ were treated with ethyl trifluoroacetate and then methylhydrazine to form the desired pyrazoles 25a-c.

The bis(trifluoromethyl)pyrazole derivatives 27 and 28 were prepared by coupling the aniline 26^{11} with

Scheme 7. Reagents: (a) 4-ClPhNH₂, NaBH(OAc)₃, AcOH, ClCH₂CH₂Cl.

Method A

Method B

EDC HCI / THF or CH_CI

Scheme 6. Reagents: (a) MeI, K₂CO₃, DMF; (b) BnBr, K₂CO₃, DMF.

Scheme 8. Reagents: (a) i—DPPA, Et₃N, toluene, then *t*-BuOH, ii—CF₃CO₂H, CH₂Cl₂; (b) 4-ClC₆H₄COCl, NaHCO₃(aq), ClCH₂CH₂Cl.

Scheme 9. Reagents: (a) CF₃CO₂Et, NaOMe, DMI; (b) MeNHNH₂, AcOH, EtOH.

Scheme 10. Reagents: (a) 4-ClPhCOCl, Et_3N , THF; (b) 2-ClC₆H₄CO₂H, EDC.HCl, THF.

4-chlorobenzoyl chloride and 2-chlorobenzoic acid, respectively (Scheme 10).

3. Results and discussion

Compounds 16, 17, 20, 22, 25, and 27–29 were evaluated for their ability to inhibit Ca²⁺ influx through CRAC and VOC channels on Jurkat T-cells¹² and PC12-h5 cells,¹³ respectively. The results are summarized in Tables 1–3.

We first examined the effect of substitutions in the pyrazole moiety of compound **4** on CRAC channel inhibitory activity and selectivity over VOC channels (Table 1). Since substitution of the 3-trifluoromethyl group with hydrogen (**16a**) or a methyl group (**16b**) resulted in loss of activity, the trifluoromethyl group seemed to be essential to the inhibition of CRAC channels. Removal of the 1-methyl group (**16d**) also dramatically reduced the inhibitory activity, and the 1-methylpyrazol-3-yl derivative **16j** showed no CRAC channel inhibitory activity. From these results, we hypothesized that the methyl group on the nitrogen neighboring the thiophene ring might be essential for CRAC channel inhibition. We proposed that the methyl group may cause steric repulsion of the thienyl group, and that the resultant torsion between the pyrazole and thiophene rings would result in inhibitory activity for CRAC channels. Methyl and ethyl groups (16g) were found to be interchangeable at this site, however, the introduction of larger moieties, such as isopropyl (16h) and benzyl (17d) groups, tended to reduce both the activity and selectivity of the compounds. These facts indicated that small alkyl groups at the 1-position on the pyrazole ring were favorable for inhibiting CRAC channels, and that bulky groups may interfere with interactions with the target molecules. The 1,4-dimethyl derivative 17c had a reduced inhibitory activity and we speculated that this change at the 4-position may have been unfavorable for CRAC channel inhibition because it changed the torsional angle between the pyrazole and thiophene rings.

Second, we examined the effect of the substitutions in the thiophene and amide moieties of compound 4 on inhibitory activity and selectivity (Table 2). The fact that the methyl derivative 16e was about 7-fold less potent than compound 4 led us to the view that a methyl group introduced on the thiophene ring would also alter the torsional angle between the pyrazole and thiophene rings. The amine derivative 20 was 35-fold less potent than compound 4, and N-methylation (16k) also resulted in a reduction in its activity. These results implied that both the carbonyl and the N-H groups were necessary for high potency. Since the reversed amide derivative 22 showed weak activity, we speculated that the distance of the carbonyl and the N-H groups from the pyrazole moiety may influence CRAC channel inhibitory activity. Substitution of the thiophene ring by the furan (16f) or by benzenes (16i, 25a) also resulted in loss of activity. We speculated that substitutions in the center of the compounds would have considerable effects on the whole conformation of the molecule and such conformational change caused by introducing furan and 1,3-phenylene may be incompatible with inhibition of CRAC channels. On the other hand, the 1,4-phenylene group in compound 25a would alter the distance between the amide groups on the pyrazole moiety compared to compound 4, and this may also be unfavor-

Table 1. Physical and biological properties of 4'-chloro-5-(substituted-pyrazolyl)thiophene-2-carboxanilides

Compound	R_1	R_2	R_3	R_4	Formula ^a	Method	Yield	Mp (°C)	Solvent ^b	IC ₅₀ (µM)		CRAC channel
							(%)			CRAC ^c	VOC ^d	selectivity ^e
4	Me	_	CF_3	Н	C ₁₆ H ₁₁ ClF ₃ N ₃ OS	_	_	_	_	0.13	0.75	5.8
16a	Me		Н	Н	C ₁₅ H ₁₂ ClN ₃ OS	Α	54	206—208	D–A	19% ^f	NT	_
16b	Me		Me	Η	C ₁₆ H ₁₄ ClN ₃ OS	В	6.6	198—200	A–B	31% ^f	NT	_
16d	Н		CF_3	Н	C ₁₅ H ₉ ClF ₃ N ₃ OS ·0.1C ₄ H ₈ O ₂	Α	23	246—247	A–B	$0\%^{\mathrm{f}}$	NT	_
16j		Me	CF_3	Η	C ₁₆ H ₁₁ ClF ₃ N ₃ OS	В	60	241-242	А	$8\%^{f}$	NT	_
16g	Et		CF_3	Η	C ₁₇ H ₁₃ ClF ₃ N ₃ OS	А	59	177	A–B	0.25	2.0	8.0
16h	<i>i</i> -Pr		CF_3	Н	C ₁₈ H ₁₅ ClF ₃ N ₃ OS	Α	36	205-210	A–B	0.56	1.9	3.4
17d	Bn		CF_3	Η	C ₂₂ H ₁₅ ClF ₃ N ₃ OS	_	3.5	oil		3.4	1.8	0.53
17c	Me		CF_3	Me	C17H13ClF3N3OS	_	35	192—196	A–B	0.37	1.5	4.1

^a Elemental analyses were within $\pm 0.4\%$ of calculated values, unless otherwise noted.

^b Recrystallization solvents: A, AcOEt; B, hexane; C, EtOH; D, MeOH.

^c Inhibition of Ca^{2+} influx through CRAC channels on Jurkat T-cells. See Section 5. ^d Inhibition of Ca^{2+} influx through VOC channels on PC12-h5 cells. See Section 5.

^e IC₅₀ to VOC channel/IC₅₀ to CRAC channel.

^f% inhibition at 10 μM.

able for inhibitory activity. In the series of phenylene derivatives possessing the reversed amide (25c, 25b), the 1,3-phenylene group (25c) reduced the activity. Surprisingly, the 1,4-phenylene derivative 25b was a more potent CRAC channel inhibitor than compound 4 with an IC₅₀ value of 0.085 µM. Additionally, this compound showed high selectivity for CRAC channels with an index of more than 31, due to a reduced inhibitory activity for VOC channels. We identified the positions of the carbonyl and the N-H groups in compound 25b as important for a high inhibitory activity for CRAC channels.

To investigate the SARs of the arylpyrazole series, in detail we carried out single-crystal X-ray diffraction studies of compounds 5, 25c, and 25b (Fig. 2). This showed that the pharmacologically active compounds 5 and 25b had an 'extended' conformation, in contrast to the 'bended' conformation of the inactive compound 25c. Additionally, we found that the distance between the carbon of the trifluoromethyl group and the amide proton in compounds 5 and 25b was similar: 9.71 and 9.44 Å, respectively. In contrast, the corresponding distances in the inactive compound 25c were found to be much shorter (7.68 Å). We therefore concluded that the overall conformation of the compounds and the distance between the trifluoromethyl group and the amide proton are important determinants of the inhibitory activity of the compounds.

The SARs observed in the series of compounds possessing a (1-alkyl-3-trifluoromethyl)pyrazole moiety are summarized below. The degree of torsional angle between the pyrazole and thiophene rings should influence the CRAC channel inhibitory activity. The 1-alkyl and 3-trifluoromethyl groups were necessary for CRAC channel inhibition, and we suggested that the hydrophobic groups in the pyrazole moiety were also favorable

for inhibitory activity. In addition, the amide group was essential for the inhibition of CRAC channels, and compounds possessing this group at a suitable distance from the trifluoromethyl moiety seemed to retain potent activity, even in the series of reversed-type amide derivatives such as compound 25b.

These results led us to design a new type of molecular skeleton. We hypothesized that the presence of highly hydrophobic groups such as bis(trifluoromethyl)pyrazole might be favorable for potent CRAC channel inhibitory activity and therefore evaluated the pharmacological properties of some derivatives of this type (Table 3). In the series of compounds possessing chloro groups (27, 28), the 4-chloro group (27) reduced activity. In contrast, the 2-chloro derivative 28 inhibited CRAC channel activity with an IC₅₀ value of the order of 10^{-7} M. These results resembled the observations that compound 5, bearing the 2-chlorophenyl group, was a more potent and selective CRAC channel inhibitor than the 4-chlorophenyl derivative 4.¹. This suggested that the substitution at the 2-position on the phenyl group would also favour high CRAC channel inhibitory activity in the case of bis(trifluoromethyl)pyrazole derivatives. Based on these SARs, we subsequently investigated the known 4'-[3,5-bis(trifluoromethyl)-1*H*pyrazol-1-yl]-arylcarboxanilide derivatives with substitutions neighboring the amide bond. As a result, we identified 4-methyl-4'-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]-1,2,3-thiadiazole-5-carboxanilide (29) as a CRAC channel inhibitor that was more selective than compound 4, with an IC₅₀ value of 0.15 μ M and a selectivity index of 31 compared to VOC channels. Although similar carboxanilide derivatives, including compound 29, were recently reported to inhibit transcriptional activity in activated T-cells, with nuclear factors being the target for these immunosuppressants,14 their inhibitory activity against CRAC channels has not been

Table 2	. Physical	l and bic	ological	properties	of	1-methy	l-5-sut	ostituted	-3	-trifluorometh	yŀ	-1 <i>H</i> -	pyrazo	oles
											-			

Compound	R	Formula ^a	Method	Yield (%)	Mp (°C)	Solvent ^b	IC ₅₀ (µM)		CRAC channel
F				(, -)			CRAC ^c	VOC ^d	selectivity ^e
4	S C CI	C ₁₆ H ₁₁ ClF ₃ N ₃ OS	_	_	_	_	0.13	0.75	5.8
16e		C ₁₇ H ₁₃ ClF ₃ N ₃ OS	А	51	162—164	A–B	0.96	1.5	1.6
20	S H CI	$C_{16}H_{13}ClF_3N_3S$	_	86	92—94	_	4.5	3.3	0.73
16k	S O CI	C ₁₇ H ₁₃ ClF ₃ N ₃ OS	В	58	136—137	A–B	5.1	3.9	0.76
22	S H CI	C ₁₆ H ₁₁ ClF ₃ N ₃ OS	_	53	166—168	A–B	1.6	2.3	1.4
16f	CI CI	C ₁₆ H ₁₁ ClF ₃ N ₃ O ₂	А	46	183—185	A–B	8.6	6.2	0.72
16i	U U U U U U U U U U U U U U U U U U U	C ₁₈ H ₁₃ ClF ₃ N ₃ O	А	66	190—192	A–B	14% ^f	NT	
25a	O CI	C ₁₈ H ₁₃ ClF ₃ N ₃ O	_	37	155—160	A–B	36% ^f	NT	
25c	N H Cl	C ₁₈ H ₁₃ ClF ₃ N ₃ O	_	17	150—153	A–B	1.1	2.0	1.8
25b	H CI	C ₁₈ H ₁₃ ClF ₃ N ₃ O	_	33	187—188	A–B	0.085	2.6	31

 a Elemental analyses were within $\pm 0.4\%$ of calculated values, unless otherwise noted.

^b Recrystallization solvents: A, AcOEt; B, hexane; C, EtOH; D, MeOH.

^c Inhibition of Ca^{2+} influx through CRAC channels on Jurkat T-cells. See Section 5. ^d Inhibition of Ca^{2+} influx through VOC channels on PC12-h5 cells. See Section 5.

 $^{e}\,IC_{50}$ to VOC channel/IC_{50} to CRAC channel.

^f% inhibition at 10 μ M.

described. We consider these compounds will provide useful leads for the discovery of other potent and selective CRAC channel inhibitors.

As shown in Figure 2, single-crystal X-ray diffraction studies of compounds 29 revealed that the amide proton was located 9.24 Å from the farther trifluoromethyl group on the pyrazole ring, which was similar to the distance measured in active compounds such as compounds 5 and 25b (9.71 and 9.44 Å, respectively).

Selected compounds (16g, 25b, 28, and 29) were evaluated for their ability to inhibit phytohemagglutinin (PHA)-induced IL-2 production in Jurkat T-cells⁵

			F₃C	0				
Compound	R	Formula ^a	Yield (%)	Mp (°C)	Solvent ^b	IC ₅₀ (μΜ)	CRAC channel
						CRAC ^c	VOC ^d	selectivity ^e
4		$C_{16}H_{11}ClF_3N_3OS$	_	_	_	0.13	0.75	5.8
27	CI	$C_{18}H_{10}ClF_6N_3O$	48	196—197	A–B	41% ^f	NT	_
28	CI	$C_{18}H_{10}ClF_6N_3O$	21	183—185	A–B	0.63	24% ^f	>16
29	Me N S	$C_{15}H_9F_6N_5OS$	_	_	_	0.15	4.7	31

Table 3. Physical and biological properties of 4'-[3,5-bis(trifluoromethyl)pyrazol-1-yl]carboxanilides

 $^{\rm a}$ Elemental analyses were within $\pm 0.4\%$ of calculated values, unless otherwise noted.

^b Recrystallization solvents: A, AcOEt; B, hexane; C, EtOH; D, H₂O.

^c See the corresponding footnotes to Table 1.

^d Inhibition of Ca²⁺ influx through VOC channels on PC12-h5 cells. See Section 5.

^e IC₅₀ to VOC channel/IC₅₀ to CRAC channel.

^f% inhibition at 10 μM.

(Table 4). These compounds did inhibit IL-2 production, indicating that CRAC channel inhibitors can inhibit T-cell function. In particular, the 4'-[3,5-bis(trifluoromethyl)pyrazol-1-yl]carboxanilide derivatives **28** and **29** potently inhibited IL-2 production with IC₅₀ values of 0.013 and 0.017 μ M, respectively, which were about 35 times higher than that for compound **4**. We believe that the new type of molecular skeleton, the 4'-[3,5bis(trifluoromethyl)pyrazol-1-yl]carboxanilide moiety, will be very useful for discovering potent inhibitors of IL-2 production derived from CRAC channel activation.

Compounds 25b and 29 were also evaluated for their inhibitory activity in the concanavalin A (Con A)-induced hepatitis model in mice¹⁵ (Table 5). Compound 5 was already known to act as a moderately effective inhibitor of liver injury at a dose of $30 \text{ mg/kg } p.o.^1$ In contrast, compounds 25b and 29 showed potent inhibitory activities, with ED_{50} values of 4.2 and 0.61 mg/kg p.o., respectively. Compound 29 was also tested in a delayed-type hypersensitivity (DTH) model,¹⁶ and was found to inhibit trinitrochlorobenzene (TNCB)-induced ear swelling in sensitized mice with an ED₅₀ value of 1.1 mg/kg p.o. These results demonstrated that compounds 25b and 29 were orally available and effective inhibitors in these pharmacological models, associated with T-cell activation. We suggest that the 4'-pyrazolyl carboxanilides may exhibit potent activities in vivo.

4. Conclusion

We designed novel aryl-3-trifluoromethylpyrazole derivatives from compound **4** and evaluated their ability to

inhibit CRAC and VOC channels. SAR showed that the 1-methyl group on the pyrazole ring is essential to the inhibition of CRAC channels, as a result of its effect on the torsional angle between the pyrazole and thiophene rings. We found that the distance between the trifluoromethyl group and the amide proton also influenced the activity. We identified compound 25b as a potent and highly selective CRAC channel inhibitor, with an IC₅₀ value for CRAC channels of $0.085 \,\mu M$ and a selectivity index of more than 31. We also designed a new type of CRAC channel inhibitor, 4'-[3,5bis(trifluoromethyl)pyrazol-1-yl]carboxanilides, utilizing the SARs obtained from the series of compounds with a (1-alkyl-3-trifluoromethyl)pyrazole moiety, and as a result found that compound 29 showed selective CRAC channel inhibitory activity with an IC₅₀ value of 0.15 µM and a selectivity index of 31. In addition, compounds 25b and 29 were found to inhibit the function of T-lymphocytes both in vitro and in vivo. These compounds have the potential to provide a new class of orally active, anti-inflammatory agents.

5. Experimental

5.1. Chemistry

Melting points were determined with a Yanagimoto MP-3 melting point apparatus and are uncorrected. ¹H NMR spectra were recorded on a JEOL JNM-90, JEOL JNM-LA300, JEOL JNM-EX400, or JEOL JNM-A500 spectrometer and were referenced to an internal standard, tetramethylsilane. The abbreviations used for the signal patterns are as follows: s, singlet; br s, broad singlet; d, doublet; t, triplet; q, quartet; dd, double doublet;

29

Figure 2. ORTEP view with the labeling scheme for compounds 5, 25c, 25b, and 29.

F4

 Table 4. Biological properties of selected compounds in vitro

Compound	IC ₅₀ (μ M)
	CRAC ^a	IL-2 ^b
4	0.13	0.53
16g	0.25	0.26
25b	0.085	0.21
28	0.63	0.013
29	0.15	0.017

^a Inhibition of Ca²⁺ influx through CRAC channels on Jurkat T-cells. See Section 5.

^b Inhibition of PHA-induced IL-2 production in Jurkat T-cells. See Section 5.

Table 5. Effects of compounds 5, 25b, and 29 in vivo

Compound	Hej	patitis ^a	DTH ^b
	ED ₅₀ (mg/kg <i>p.o.</i>)	% inhibition at 30 mg/kg <i>p.o.</i>	ED ₅₀ (mg/kg <i>p.o.</i>)
5		46	
25b	4.2		
29	0.61		1.1

^a Inhibition of Con A-induced liver injury in mice. See Section 5.

^b Inhibition of TNCB-induced contact hypersensitivity in mice. See Section 5.

dt, double triplet; tt, triple triplet; m, multiplet. Mass spectra were recorded on a JEOL JMS-DX300, JEOL JMS-DX2000, HP 5970-MSD, Fisons TRIO-1000 or Finnigan mat TSQ 700 mass spectrometer, and the ionization method was chosen from EI and FAB. The elemental analyses were performed with a Yanako MT-5 microanalyzer (C, H, and N) and a Yokogawa IC-7000S ion chromatographic analyzer (halogens and S). Where analyses are indicated by symbols, the analytical results are within $\pm 0.4\%$ of the theoretical values. Drying of organic solutions during workup was done over anhydrous MgSO₄. Preparative column chromatography was performed with Wakogel C-200 or Merck silica gel 60.

5.2. 1-Methyl-5-(2-thienyl)-1*H*-pyrazole (7a) and 1-methyl-3-(2-thienyl)-1*H*-pyrazole (8a)

A mixture of 3-(2-thienyl)-1*H*-pyrazole (**6a**, 1.58 g, 10.5 mmol), K_2CO_3 (2.18 g, 15.8 mmol), and MeI (0.98 mL, 16 mmol) in DMF (20 mL) was stirred for 24 h at room temperature. The mixture was added H₂O and extracted with AcOEt, washed with H₂O, brine, dried, and concentrated in vacuo. The residue was purified by column chromatography (hexane/AcOEt = 8:1-5:1) to give **7a** (344 mg, 20%) as a pale yellow oil and **8a** (758 mg, 44%) as a pale yellow oil.

5.2.1. 1-Methyl-5-(2-thienyl)-1*H*-**pyrazole (7a).** ¹H NMR (CDCl₃) δ 3.98 (3H, s), 6.39 (1H, d, J = 2.2 Hz), 7.11 (1H, dd, J = 5.4, 3.7 Hz), 7.16 (1H, dd, J = 3.7, 1.6 Hz), 7.39 (1H, dd, J = 5.4, 1.6 Hz), 7.47 (1H, d, J = 2.2 Hz); FAB-MS *m*/*z* 165 [(M+H)⁺].

5.2.2. 1-Methyl-3-(2-thienyl)-1*H*-pyrazole (8a). ¹H NMR (CDCl₃) δ 3.91 (3H, s), 6.43 (1H, d, J = 2.1 Hz), 7.03 (1H, dd, J = 4.8, 3.8 Hz), 7.21 (1H, dd, J = 4.8, 1.1 Hz), 7.29 (1H, dd, J = 3.8, 1.1 Hz), 7.32 (1H, d, J = 2.1 Hz); FAB-MS *m*/*z* 165 [(M+H)⁺].

The following compound was similarly prepared.

5.3. A mixture of 1,3-dimethyl-5-(2-thienyl)-1*H*-pyrazole (7b) and 1,5-dimethyl-3-(2-thienyl)-1*H*-pyrazole (8b)

¹H NMR (CDCl₃) δ 2.28 (3H, s), 3.79, 3.90 (total 3H, s), 6.18, 6.23 (total 1H, s), 7.00–7.38 (total 3H, m); FAB-MS *m*/*z* 179 [(M+H)⁺].

5.4. 4-Methyl-3-(2-thienyl)-5-trifluoromethyl-1*H*-pyrazole (7c)

A 1.6-M solution of *n*-BuLi (21.0 mL, 33.6 mmol) in hexane was added to a mixture of diisopropylamine (3.34 g, 33 mmol) in THF (25 mL) at -40 °C, then the whole was cooled at -70 °C and 2-propionylthiophene (9c, 4.21 g, 30.0 mmol) was added dropwise below -60 °C. The mixture was stirred for 1.5 h at the same temperature and poured dropwise to a mixture of trifluoroacetic anhydride (31.5 g, 150 mmol) in THF (30 mL) at -60 °C. The mixture was stirred for 1 h and then aqueous NH₄Cl was added. The whole was extracted with AcOEt, washed with saturated aqueous NaHCO₃ and brine, then dried and concentrated in vacuo. The residue was purified by column chromatography (hexane/AcOEt = 16:1–8:1) to give a pale yellow solid (**10c**, 1.01 g). This diketone (569 mg, 2.41 mmol) was added to a mixture of hydrazine hydrochloride (181 mg, 2.64 mmol) and EtOH (5 mL), and the whole was heated at 50 °C for 2 h. Aqueous NaHCO₃ was added to the mixture and extracted with AcOEt, washed with brine, dried, and concentrated in vacuo to give **7c** (448 mg, 11%) as a brown solid: ¹H NMR (CDCl₃) δ 2.29 (3H, d, J = 1.0 Hz), 7.16 (1H, dd, J = 5.1, 3.7 Hz), 7.25 (1H, dd, J = 3.5, 1.0 Hz), 7.45 (1H, dd, J = 4.9, 1.0 Hz), 10.80 (1H, br s); FAB-MS m/z 233 [(M+H)⁺].

5.5. 5-(2-Thienyl)-3-trifluoromethyl-1*H*-pyrazole (7d)

NaOMe (17.3 g, 319 mmol) in MeOH (100 mL) was added to a solution of 2-acetylthiophene (9d, 31.0 g, 246 mmol) in MeOH (150 mL), and the whole was stirred for 1 h at room temperature. It was cooled on icebath, then added ethyl trifluoroacetate (41.9 g, 295 mmol), and the whole was heated to reflux for 24 h. H₂O was added to the mixture and extracted with AcOEt, washed with brine, dried, and concentrated in vacuo to give a brown oil (10d). This crude compound was added to a mixture of hydrazine hydrate (13.1 mL, 271 mmol), AcOH (25 mL), and EtOH (250 mL), and the whole was heated to reflux for 13 h. The mixture was concentrated in vacuo, and saturated aqueous NaHCO₃was added to the residue and extracted with AcOEt, washed with brine, dried, and concentrated in vacuo. The residue was crystallized from AcOEt/hexane to give 7d (11.1 g, 21%) as a pale brown powder: ¹H NMR (CDCl₃) δ 6.72 (1H, s), 7.10–7.14 (1H, m), 7.31 (1H, dd, J = 3.8, 1.1 Hz), 7.38–7.42 (1H, J)m), 10.66 (1H, br s); FAB-MS m/z 219 [(M+H)⁺].

The following compounds were prepared following the same methods with the modification that methylhydrazine and AcOH were used instead of hydrazine hydrochloride.

5.6. 1-Methyl-5-(3-methyl-2-thienyl)-3-trifluoromethyl-1*H*-pyrazole (7e)

¹H NMR (CDCl₃) δ 2.18 (3H, s), 3.83 (3H, s), 6.56 (1H, s), 6.98 (1H, d, J = 4.8 Hz), 7.40 (1H, d, J = 5.2 Hz); FAB-MS *m*/*z* 247 [(M+H)⁺].

5.7. 5-(2-Furyl)-1-methyl-3-trifluoromethyl-1*H*-pyrazole (7f)

¹H NMR (CDCl₃) δ 4.09 (3H, s), 6.54 (1H, dd, J = 3.8, 2.0 Hz), 6.61–6.64 (1H, m), 6.71 (1H, s), 7.54 (1H, dd, J = 1.8, 0.9 Hz); FAB-MS *m*/*z* 217 [(M+H)⁺].

5.8. Ethyl 5-(1-methyl-1*H*-pyrazol-5-yl)thiophene-2-carboxylate (11a)

A 1.6 M solution of *n*-BuLi (1.23 mL, 1.9 mmol) in hexane was added dropwise to a solution of 1-methyl-5-(2thienyl)-1*H*-pyrazole (**7a**, 281 mg, 1.71 mmol) in THF (6 mL) at -78 °C. The mixture was stirred for 1 h at -50 °C and then ethyl chloroformate (0.33 mL, 3.42 mmol) was added at the same temperature. The mixture was stirred for 3 h at -70 °C, then H₂O was added. The whole was extracted with AcOEt, washed with brine, dried, and concentrated in vacuo. The residue was purified by column chromatography (hexane/AcOEt = 5:1) to give **11a** (338 mg, 84%) as a pale yellow solid: ¹H NMR (CDCl₃) δ 1.40 (3H, t, J = 7.1 Hz), 4.03 (3H, s), 4.38 (2H, q, J = 7.2 Hz), 6.47 (1H, d, J = 2.1 Hz), 7.15 (1H, d, J = 3.9 Hz); FAB-MS *m*/*z* 237 [(M+H)⁺].

The following compounds were prepared using similar methods.

5.9. Ethyl 5-(1,3-dimethyl-1*H*-pyrazol-5-yl)thiophene-2carboxylate (11b) [a mixture with ethyl 5-(1,5-dimethyl-1*H*-pyrazol-3-yl)thiophene-2-carboxylate]

¹H NMR (CDCl₃) δ 1.37, 1.39 (total 3H, t, J = 7.4 Hz), 3.80, 3.94 (total 3H, s), 4.35, 4.37 (total 2H, q, J = 7.2 Hz), 6.25, 6.27 (total 1H, s), 7.11, 7.21 (total 1H, d, J = 3.7 Hz), 7.71, 7.76 (total 1H, d, J = 3.9 Hz); GC-MS m/z 250 (M⁺).

5.10. Ethyl 3-methyl-5-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxylate (11e)

¹H NMR (CDCl₃) δ 1.39 (3H, t, *J* = 7.1 Hz), 2.19 (3H, s), 3.86 (3H, s), 4.37 (2H, q, *J* = 7.2 Hz), 6.60 (1H, s), 7.66 (1H, s); FAB-MS *m*/*z* 319 [(M+H)⁺].

5.11. Ethyl 5-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)furan-2-carboxylate (11f)

¹H NMR (CDCl₃) δ 1.40 (3H, t, J = 7.1 Hz), 4.17 (3H, s), 4.40 (2H, q, J = 7.1 Hz), 6.72 (1H, d, J = 3.6 Hz), 6.85 (1H, s), 7.26 (1H, d, J = 3.9 Hz); FAB-MS *m*/*z* 289 [(M+H)⁺].

5.12. Ethyl 5-(5-trifluoromethyl-1*H*-pyrazol-3-yl)thio-phene-2-carboxylate (11d)

A 1.6-M solution of n-BuLi (30.0 mL, 48.0 mmol) in hexane was added dropwise to a solution of 5-(2-thienyl)-3trifluoromethyl-1H-pyrazole (7d, 5.02 g, 23.0 mmol) in THF (50 mL) below -60 °C. The mixture was stirred for 1 h at 0 °C, then ethyl chloroformate (4.62 mL, 48.3 mmol) was added below -60 °C. The mixture was stirred for 1 h at -78 °C, then H₂O was added. The whole was extracted with AcOEt, washed with brine, dried, and concentrated in vacuo. The residue was purified by column chromatography (hexane/AcOEt = 9:1-6:1) to give a pale yellow solid (4.67 g). This diester was added to a mixture of NaHCO₃ (1.08 g, 12.9 mmol), H₂O (20 mL), EtOH (50 mL), and dioxane (30 mL), and the whole was stirred for 1 day at room temperature. The mixture was concentrated in vacuo, and the residue was extracted with AcOEt, washed with H₂O, brine, dried, and concentrated in vacuo to give 11d (3.48 g, 52%) as a colorless solid: ¹H NMR (CDCl₃) δ 1.40 (3H, t, J = 7.1 Hz), 4.39 (2H, q, J = 7.1 Hz), 6.79 (1H, s), 7.28 (1H, d, J = 3.6 Hz), 7.76 $(1H, d, J = 4.2 \text{ Hz}), 11.46 (1H, \text{ br s}); \text{ FAB-MS } m/2 291 [(M+H)^+].$

5.13. Ethyl 5-(1-ethyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxylate (11g)

The title compound was prepared from **11d** by a procedure similar to that described for **7a** and **8a** (33% from **11d**): ¹H NMR (CDCl₃) δ 1.40 (3H, t, *J* = 7.2 Hz), 1.50 (3H, t, *J* = 7.2 Hz), 4.35 (2H, q, *J* = 7.2 Hz), 4.39 (2H, q, *J* = 7.2 Hz), 6.67 (1H, s), 7.17 (1H, d, *J* = 3.9 Hz), 7.80 (1H, d, *J* = 3.9 Hz); FAB-MS *m*/*z* 319 [(M+H)⁺].

The following compounds were prepared using similar methods.

5.14. Ethyl 5-(1-isopropyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxylate (11h)

¹H NMR (CDCl₃) δ 1.40 (3H, t, J = 7.1 Hz), 1.53 (6H, d, J = 6.8 Hz), 4.39 (2H, q, J = 7.0 Hz), 4.77 (1H, sept, J = 6.6 Hz), 6.62 (1H, s), 7.14 (1H, d, J = 3.9 Hz), 7.80 (1H, d, J = 3.5 Hz); FAB-MS m/z 333 [(M+H)⁺].

5.15. 5-(1-Methyl-1*H*-pyrazol-5-yl)thiophene-2-carboxylic acid (12a)

A mixture of ethyl 5-(1-methyl-1*H*-pyrazol-5-yl)thiophene-2-carboxylate (**11a**, 310 mg, 1.31 mmol), 5 M NaOH (1 mL) and EtOH (5 mL) was stirred for 19 h at room temperature. The mixture was added 1 M HCl (5 mL) and H₂O, then filtered and recrystallized from EtOH to give **12a** (175 mg, 64%) as a colorless powder: ¹H NMR (DMSO-*d*₆) δ 3.98 (3H, s), 6.63 (1H, d, *J* = 1.8 Hz), 7.46 (1H, d, *J* = 3.9 Hz), 7.49 (1H, d, *J* = 1.8 Hz), 7.77 (1H, d, *J* = 3.6 Hz), 13.29 (1H, s); FAB-MS *m*/*z* 209 [(M+H)⁺].

The following compounds were prepared using similar methods.

5.16. 5-(1,3-Dimethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxylic acid (12b) [a mixture with 5-(1,5-dimethyl-1*H*pyrazol-3-yl)thiophene-2-carboxylic acid]

¹H NMR (DMSO- d_6) δ 2.16, 2.27 (total 3H, s), 3.75, 3.89 (total 3H, s), 6.40, 6.49 (total 1H, s), 7.33, 7.40 (total 1H, d, J = 3.9 Hz), 7.64, 7.74 (total 1H, d, J = 3.9 Hz), 13.12 (1H, br s); FAB-MS *m*/*z* 223 [(M+H)⁺].

5.17. 5-(5-Trifluoromethyl-1*H*-pyrazol-3-yl)thiophene-2-carboxylic acid (12d)

¹H NMR (DMSO-*d*₆) δ 7.23 (1H, s), 7.60 (1H, d, J = 4.0 Hz), 7.76 (1H, d, J = 4.0 Hz); FAB-MS *m*/*z* 263 [(M+H)⁺].

5.18. 3-Methyl-5-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxylic acid (12e)

¹H NMR (DMSO- d_6) δ 2.16 (3H, s), 3.85 (3H, s), 7.03 (1H, s), 7.70 (1H, s), 13.36 (1H, s); FAB-MS *m*/*z* 289 [(M+H)⁺].

5.19. 5-(1-Methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)furan-2-carboxylic acid (12f)

¹H NMR (CDCl₃) δ 4.20 (3H, s), 6.77 (1H, d, J = 3.9 Hz), 6.89 (1H, s), 7.41 (1H, d, J = 3.6 Hz); FAB-MS *m*/*z* 261 [(M+H)⁺].

5.20. 5-(1-Ethyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thio-phene-2-carboxylic acid (12g)

¹H NMR (DMSO-*d*₆) δ 1.39 (3H, t, *J* = 7.2 Hz), 4.36 (2H, q, *J* = 7.2 Hz), 7.15 (1H, s), 7.53 (1H, d, *J* = 3.9 Hz), 7.80 (1H, d, *J* = 3.9 Hz), 13.46 (1H, br s); FAB-MS *m*/*z* 291 [(M+H)⁺].

5.21. 5-(1-Isopropyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxylic acid (12h)

¹H NMR (DMSO- d_6) δ 1.44 (6H, d, J = 6.9 Hz), 4.83 (1H, sept, J = 6.5 Hz), 7.08 (1H, s), 7.48 (1H, d, J = 3.9 Hz), 7.80 (1H, d, J = 3.4 Hz); FAB-MS m/z 305 [(M+H)⁺].

5.22. 5-(4-Methyl-5-trifluoromethyl-1*H*-pyrazol-3-yl)thiophene-2-carboxylic acid (12c)

The title compound was prepared from **7c** by a procedure similar to that described for **11d**, using 1-M NaOH instead of aqueous NaHCO₃: ¹H NMR (DMSO-*d*₆) δ 2.28 (3H, s), 7.53 (1H, d, *J* = 3.9 Hz), 7.81 (1H, d, *J* = 3.9 Hz), 13.35 (1H, s), 14.11 (1H, s); FAB-MS *m*/*z* 275 [(M-H)⁻].

5.23. 1-Methyl-5-(3-methylphenyl)-3-(trifluoromethyl)-1*H*-pyrazole (14)

Methylhydrazine (1.89 g, 41.0 mmol) was added to an ice-cooled mixture of 4,4,4-trifluoro-1-(3-methylphe-nyl)butane-1,3-dione (13, 8.98 g, 37.3 mmol), AcOH (12 mL), and EtOH (70 mL), and the whole was stirred for 0.5 h at room temperature, then heated to reflux for 1 h. The mixture was concentrated in vacuo, and saturated aqueous NaHCO₃ was added to the residue and extracted with AcOEt, washed with brine, dried, and concentrated in vacuo. The residue was purified by column chromatography (hexane/toluene = 4:1) to give 14 (2.28 g, 25%) as a pale yellow oil: ¹H NMR (DMSO- d_6) δ 2.38 (3H, s), 3.92 (3H, s), 6.87 (1H, s), 7.28–7.46 (4H, m); FAB-MS *m*/z 241 [(M+H)⁺].

5.24. 3-[1-Methyl-3-(trifluoromethyl)-1*H*-pyrazol-5-yl]benzoic acid (12i)

A mixture of 1-methyl-5-(3-methylphenyl)-3-(trifluoromethyl)-1*H*-pyrazole (14, 961 mg, 4.00 mmol) and KMnO₄ (632 mg, 4.00 mmol) in H₂O (30 mL) was heated to reflux for 12 h. Further KMnO₄ (3.16 g, 20.0 mmol) was added and the whole was heated to reflux for 9 h. The mixture was filtered on Celite and washed with 1 M NaOH and H₂O, then the filtrate was added Et₂O and extracted with H₂O. The aqueous layer was acidified with 1 M HCl and extracted with AcOEt, washed with brine, dried, and concentrated in vacuo. The residue was purified by column chromatography (CHCl₃/MeOH = 10:1) and recrystallized from *i*-Pr₂O to give **12i** (90 mg, 8.3%) as a colorless solid ¹H NMR (DMSO- d_6) δ 3.94 (3H, s), 7.01 (1H, s), 7.68 (1H, t, J = 7.7 Hz), 7.85–7.91 (1H, m), 8.03–8.11 (2H, m), 13.24 (1H, s); FAB-MS *m/z* 271 [(M+H)⁺].

5.25. 4'-Chloro-5-(1-methyl-1*H*-pyrazol-5-yl)thiophene-2-carboxanilide (16a)

A mixture of 5-(1-methyl-1*H*-pyrazol-5-yl)thiophene-2carboxylic acid (**12a**, 149 mg, 0.716 mmol), 4-chloroaniline (110 mg, 0.859 mmol), and EDC·HCl (206 mg, 1.07 mmol) in THF (5 mL) was stirred for 5 h at room temperature. H₂O was added to the whole and extracted with AcOEt, washed with saturated aqueous NaHCO₃, brine, dried, and concentrated in vacuo. The residue was recrystallized from MeOH–AcOEt to give **16a** (124 mg, 54%) as a colorless powder: ¹H NMR (CDCl₃) δ 4.01 (3H, s), 6.64 (1H, d, J = 1.9 Hz), 7.43 (2H, d, J = 8.8 Hz), 7.50 (1H, d, J = 2.0 Hz), 7.52 (1H, d, J = 4.4 Hz), 7.77 (2H, d, J = 8.8 Hz), 8.07 (1H, d, J = 3.9 Hz), 10.43 (1H, s); FAB-MS *m/z* 318 [(M+H)⁺].

The following compounds were prepared using similar methods.

5.26. 4'-Chloro-5-(4-methyl-5-trifluoromethyl-1*H*-pyrazol-3-yl)thiophene-2-carboxanilide (16c)

¹H NMR (DMSO- d_6) δ 2.30 (3H, s), 7.44 (2H, d, J = 8.8 Hz), 7.57 (1H, d, J = 3.9 Hz), 7.78 (2H, d, J = 8.8 Hz), 8.09 (1H, d, J = 3.9 Hz), 10.46 (1H, s), 14.09 (1H, br s); FAB-MS *m*/*z* 386 [(M+H)⁺].

5.27. 4'-Chloro-5-(3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxanilide (16d)

¹H NMR (DMSO- d_6) δ 7.20 (1H, s), 7.43 (2H, d, J = 8.8 Hz), 7.64 (1H, d, J = 3.9 Hz), 7.77 (2H, d, J = 8.7 Hz), 8.04 (1H, d, J = 3.9 Hz), 10.45 (1H, s), 14.34 (1 H, s); FAB-MS m/z 372 [(M+H)⁺].

5.28. 4'-Chloro-4-methyl-5-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxanilide (16e)

¹H NMR (DMSO- d_6) δ 2.21 (3H, s), 3.87 (3H, s), 7.03 (1H, s), 7.43 (2H, d, J = 8.8 Hz), 7.77 (2H, d, J = 8.8 Hz), 7.98 (1H, s), 10.45 (1H, s); FAB-MS m/z 400 [(M+H)⁺].

5.29. 4'-Chloro-5-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)furan-2-carboxanilide (16f)

¹H NMR (CDCl₃) δ 4.13 (3H, s), 6.78 (1H, d, J = 4.0 Hz), 6.89 (1H, s), 7.35 (2H, d, J = 8.8 Hz), 7.37 (1H, d, J = 3.9 Hz), 7.62 (2H, d, J = 8.7 Hz), 7.96 (1H, s); FAB-MS *m*/*z* 370 [(M+H)⁺].

5.30. 4'-Chloro-5-(1-ethyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxanilide (16g)

¹H NMR (CDCl₃) δ 1.51 (3H, t, *J* = 7.3 Hz), 4.36 (2H, q, *J* = 7.3 Hz), 6.69 (1H, s), 7.21 (1H, d, *J* = 3.9 Hz),

7.36 (2H, d, J = 8.7 Hz), 7.58 (2H, d, J = 8.8 Hz), 7.61 (1H, d, J = 3.9 Hz), 7.66 (1H, s); FAB-MS *m*/*z* 400 [(M+H)⁺].

5.31. 4'-Chloro-5-(1-isopropyl-3-trifluoromethyl-1*H*-pyr-azol-5-yl)thiophene-2-carboxanilide (16h)

¹H NMR (CDCl₃) δ 1.54 (6H, d, J = 6.8 Hz), 4.78 (1H, sept, J = 6.6 Hz), 6.64 (1H, s), 7.17 (1H, d, J = 3.9 Hz), 7.35 (2H, d, J = 8.8 Hz), 7.58 (2H, d, J = 8.8 Hz), 7.61 (1H, d, J = 3.4 Hz), 7.67 (1H, s); FAB-MS *m*/*z* 414 [(M+H)⁺].

5.32. 4'-Chloro-3-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)benzanilide (16i)

¹H NMR (DMSO- d_6) δ 4.21 (3H, s), 7.03 (1H, s), 7.43 (2H, d, J = 8.8 Hz), 7.71(1H, t, J = 7.8 Hz), 7.82 (2H, d, J = 8.8 Hz), 7.83–7.87 (1H, m), 8.04–8.08 (1H, m), 8.14 (1H, t, J = 1.5 Hz), 10.43 (1H, s); FAB-MS m/z 380 [(M+H)⁺].

5.33. 4'-Chloro-5-(1,3-dimethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxanilide (16b)

A mixture of 5-(1,3-dimethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxylic acid (12b, 202 mg, 0.909 mmol, accompanied with regioisomer), oxalyl chloride (127 µL, 1.45 mmol), and DMF (1 drop) in THF (5 mL) was stirred for 2 h at room temperature. The mixture was concentrated in vacuo, and the residue in THF (3 mL) was added dropwise to an ice-cooled mixture of 4-chloroaniline (139 mg, 1.09 mmol), Et₃N (190 μ L, 1.36 mmol), and THF (2 mL). The whole was stirred for 20 h at room temperature then H₂O was added and extracted with AcOEt, washed with brine, dried, and concentrated in vacuo. The residue was purified by column chromatography (toluene/ AcOEt = 9:1-4:1) and recrystallized from AcOEt-hexane to give 16b (20 mg, 6.6%) as a colorless powder: ¹H NMR (DMSO- d_6) δ 2.17 (3H, s), 3.91 (3H, s), 6.41 (1H, s), 7.43 (2H, d, J = 8.8 Hz), 7.47 (1H, d, J = 3.9 Hz), 7.77 (2H, d, J = 8.8 Hz), 8.05 (1H, d, J = 3.9 Hz), 10.41 (1H, s); FAB-MS m/z332 $[(M+H)^{+}].$

The following compounds were prepared according to this method, substituting aqueous $NaHCO_3$ or pyridine for Et₃N as appropriate.

5.34. 4'-Chloro-5-(1-methyl-5-trifluoromethyl-1*H*-pyrazol-3-yl)thiophene-2-carboxanilide (16j)

¹H NMR (DMSO- d_6) δ 4.01 (3H, s), 7.42 (2H, d, J = 9.2 Hz), 7.46 (1H, s), 7.63 (1H, d, J = 3.7 Hz), 7.77 (1H, d, J = 9.1 Hz), 7.99 (1H, d, J = 4.3 Hz), 10.37 (1H, s); FAB-MS m/z 386 [(M+H)⁺].

5.35. 4'-Chloro-*N*-methyl-5-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxanilide (16k)

¹H NMR (DMSO- d_6) δ 3.35 (3H, s), 3.96 (3H, s), 6.55 (1H, d, J = 3.9 Hz), 7.03 (1H, s), 7.31 (1H, d,

J = 3.9 Hz), 7.46 (2H, d, J = 8.7 Hz), 7.55 (2H, d, J = 8.3 Hz); FAB-MS m/z 400 [(M+H)⁺].

5.36. 4'-Chloro-5-(1,5-dimethyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxanilide (17c)

The title compound was prepared from **19e** by a procedure similar to that described for **7a** and **8a** (35% from **16c**): ¹H NMR (DMSO-*d*₆) δ 2.15 (3H, s), 3.91 (3H, s), 7.44 (2H, d, *J* = 9.2 Hz), 7.50 (1H, d, *J* = 4.3 Hz), 7.77 (2H, d, *J* = 9.1 Hz), 8.14 (1H, d, *J* = 3.7 Hz), 10.50 (1H, s); FAB-MS *m*/*z* 400 [(M+H)⁺].

The following compounds were prepared using similar methods.

5.37. 5-(1-Benzyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)-4'chlorothiophene-2-carboxanilide (17d) (3.5% from 16d)

¹H NMR (CDCl₃) δ 5.53 (2H, s), 6.76 (1H, s), 7.01 (1H, d, *J* = 3.9 Hz), 7.05–7.09 (2H, m), 7.30–7.36 (5H, m), 7.51 (1H, d, *J* = 3.9 Hz), 7.55 (2H, d, *J* = 9.3 Hz), 7.60 (1H, s); FAB-MS *m/z* 462 [(M+H)⁺].

5.38. 5-{5-[(4-Chloroanilino)methyl]-2-thienyl}-1-methyl-3-trifluoromethyl-1*H*-pyrazole (20)

A mixture of 4-chloroaniline (65 mg, 0.512 mmol), 5-(1methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2carboxaldehyde (**19**, 127 mg, 0.488 mmol), NaB-H(OAc)₃ (259 mg, 1.22 mmol), and AcOH (0.1 mL) in ClCH₂CH₂Cl (2 mL) was stirred for 2.5 h at room temperature. Saturated aqueous NaHCO₃ was added and extracted with AcOEt. The extract was washed with brine, dried, and concentrated in vacuo. The residue was purified by column chromatography (hexane/ AcOEt = 5:1) to give **20** (156 mg, 86%) as a pale yellow solid: ¹H NMR (CDCl₃) δ 3.99 (3H, s), 4.18 (1H, br s), 4.53 (2H, d, J = 4.9 Hz), 6.59 (1H, s), 6.61 (2H, d, J = 8.7 Hz), 7.02 (1H, d, J = 3.9 Hz), 7.06 (1H, d, J = 3.9 Hz), 7.14 (2H, d, J = 8.8 Hz); FAB-MS *m*/*z* 372 [(M+H)⁺].

5.39. 5-(1-Methyl-3-trifluoromethyl-1*H*-pyrazol-5yl)thiophen-2-ylamine monohydrochloride (21)

A mixture of 5-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophene-2-carboxylic acid (12i,905 mg. 3.28 mmol), diphenylphosphoryl azide (741 µL, 3.44 mmol), and Et₃N (479 µL, 3.44 mmol) in toluene (20 mL) was stirred at 50 °C for 30 min. It was cooled at room temperature, then *t*-BuOH (486 mg, 6.55 mmol) in toluene (1 mL) was added and the whole was stirred at 80 °C for 5 h. H₂O was added to the mixture, extracted with AcOEt, washed with brine, dried, and concentrated in vacuo. The residue was purified by column chromatography (hexane/AcOEt = 6:1-4:1) to give *t*-butyl [5-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)thiophen-2-yl]-carbamate (223 mg) as a pale yellow solid. This carbamate was added to a mixture of trifluoroacetic acid (5 mL) and CH₂Cl₂ (5 mL), and the whole was stirred for 2 days at room temperature. It was concentrated in vacuo, and the residue was added to saturated aqueous NaHCO₃. It was extracted with AcOEt, washed with brine, dried, and concentrated in vacuo. AcOEt (50 mL) and 4 M HCl–dioxane (1 mL) were added to the residue, then the whole was concentrated in vacuo. The residue was crystallized from AcOEt–Et₂O to give **21** (154 mg, 17%) as a pale yellow powder: ¹H NMR (DMSO-*d*₆) δ 3.96 (3H, s), 6.29 (1H, d, *J* = 3.9 Hz), 6.77 (1H, s), 7.36 (1H, d, *J* = 3.9 Hz), 6.80–7.40 (3H, br); GC-MS *m/z* 247 (M⁺).

5.40. 4-Chloro-*N*-[5-(1-methyl-3-trifluoromethyl-1*H*-pyr-azol-5-yl)-2-thienyl]benzamide (22)

The title compound was prepared from **21** by a procedure similar to that described for **16b**: ¹H NMR (DMSO- d_6) δ 4.03 (3H, s), 6.93 (1H, s), 7.01 (1H, d, J = 4.4 Hz), 7.33 (1H, d, J = 3.9 Hz), 7.67 (2H, d, J = 8.3 Hz), 8.05 (2H, d, J = 8.8 Hz), 11.92 (1H, s); FAB-MS m/z 386 [(M+H)⁺].

5.41. 4'-Chloro-4-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)benzanilide (25a)

The title compound was prepared from **23a** by a procedure similar to that described for **7d**: ¹H NMR (DMSO d_6) δ 3.99 (3H, s), 7.04 (1H, s), 7.43 (2H, d, J = 8.8 Hz), 7.80 (2H, d, J = 8.3 Hz), 7.85 (2H, d, J = 8.8 Hz), 8.10 (2H, d, J = 8.3 Hz), 10.50 (1H, s); FAB-MS *m*/*z* 380 [(M+H)⁺].

The following compounds were prepared using similar methods.

5.42. 4-Chloro-4'-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)benzanilide (25b)

¹H NMR (CDCl₃) δ 3.93 (3H, s), 6.56 (1H, s), 7.43 (2H, d, J = 8.8 Hz), 7.49 (2H, d, J = 8.4 Hz), 7.77 (2H, d, J = 8.8 Hz), 7.84 (2H, d, J = 8.0 Hz), 7.91 (1H, s); FAB-MS m/z 380 [(M+H)⁺].

5.43. 4-Chloro-3'-(1-methyl-3-trifluoromethyl-1*H*-pyrazol-5-yl)benzanilide (25c)

¹H NMR (CDCl₃) δ 3.93 (3H, s), 6.56 (1H, s), 7.20 (1H, d, J = 7.4 Hz), 7.42–7.50 (3H, m), 7.59 (1H, d, J = 7.8 Hz), 7.80 (2H, d, J = 8.3 Hz), 7.87 (1H, s), 8.11 (1H, br s); FAB-MS *m*/*z* 380 [(M+H)⁺].

5.44. 4-Chloro-4'-[3,5-bis(trifluoromethyl)-1*H*-pyrazol-1-yl]benzanilide (27)

The title compound was prepared from **26** by a procedure similar to that described for **16b**: ¹H NMR (DMSO- d_6) δ 7.62 (2H, d, J = 8.7 Hz), 7.65 (2H, d, J = 8.8 Hz), 7.82 (1H, s), 7.97–8.03 (4H, m), 10.64 (1H, s); FAB-MS m/z 434 [(M+H)⁺].

5.45. 2-Chloro-4'-[3,5-bis(trifluoromethyl)-1*H*-pyrazol-1-yl]benzanilide (28)

The title compound was prepared from 26 by a procedure similar to that described for 16a: ¹H NMR (DMSO- d_6) δ 7.49 (1H, td, J = 7.3, 1.0 Hz), 7.54 (1H, td, J = 7.6, 1.9 Hz), 7.58–7.67 (4H, m), 7.82 (1H, s), 7.93 (2H, d, J = 9.3 Hz), 10.88 (1H, s); FAB-MS m/z 434 [(M+H)⁺].

5.46. Fura-2 loading and population intracellular calcium measurements

Cells were suspended in HEPES buffered solution (pH = 7.4) of the following composition: NaCl; 137 mM, KCl; 5.8 mM, MgCl₂; 1 mM, CaCl₂; 2.5 mM, glucose; 5 mM, and HEPES; 10 mM. The cells were loaded with 1 µM Fura-2/AM at room temperature for 45 min, followed by successive washes to remove unincorporated dye, and resuspended in HEPES buffered solution. Cell suspensions were studied in a 96-well black plate. Fluorescence measurements for the determination of intracellular calcium concentration were made in fluorescence microplate reader (Fluostar, SLT Labinstruments GmbH, Austria) with excitation wavelength of each 340 nm and 380 nm at emission fluorescence detection of 500 nm. Then, self-fluorescence of each compound was measured in a cell-free way and was deducted from cell way fluorescence. Final intracellular calcium concentration in each well was calculated from the fluorescence ratio, using the standard equation. The $R_{\rm max}$ value was obtained from 25 μ M ionomycin-treated wells. The R_{\min} value was obtained from 25 μ M ionomycin/50 mM EGTA-treated wells.

5.47. CRAC channel inhibition assay

CRAC channel inhibition was evaluated in Jurkat cells $(2 \times 10^6 \text{ cells/mL})$. Fura-2 loaded Jurkat cells were stimulated with 1 μ M thapsigargin for 30 min and measured intracellular calcium concentration at the endpoint of 30 min. IC₅₀ values on CRAC channel inhibition of each compound were calculated from percent inhibition of thapsigargin-induced calcium influx in Jurkat cells.

5.48. VOC channel inhibition assay

VOC channel inhibition was evaluated in murine neuroblastoma, PC12-h5 cells (1×10^6 cells/mL). Fura-2 loaded PC12-h5 cells were stimulated with 50 mM KCl for 20 min and measured intracellular calcium concentration at the endpoint of 20 min. IC₅₀ values on VOC channel inhibition of each compound were calculated from percent inhibition of KCl-induced calcium influx in PC12 cells.

5.49. IL-2 production assay

Jurkat T-lymphocytes (5×10^6 cells/mL) were placed in a 96-well microplate and incubated with PHA ($20 \mu g/mL$) for 20 h, and supernatant was collected from these cells. IL-2 concentration in each supernatant was measured by human IL-2 ELISA system (DuoSeTTM, Genzyme).

5.50. Con A-induced Hepatitis

Con A (20 mg/kg) was intravenously injected to female Balb/c mice in a volume of 10 mL/kg. Blood samples were obtained 24 h after Con A injection, and serum GOT and GPT levels were measured. For oral dosage groups, compounds were suspended with 0.5% MC and administered orally in a volume of 10 mL/kg 1 h before Con A injection. Cyclosporin A (CsA) was dissolved in physiological saline and subcutaneously administered at 50 mg/kg in a volume of 10 mL/kg 2 h before Con A injection.

5.51. TNCB-induced contact hypersensitivity in mice

Five-weak-old male CD-1 mice were treated with 100 μ L of a 7% TNCB solution in the abdominal region after cutting their abdominal hair under anesthesia at day 0. Seven days after TNCB sensitization, the thickness of ear was measured, and 10 μ L of 0.25% TNCB was applied both inside and outside of ear pinnas. Only a solvent was applied for negative control mice. Ear thickness was measured using a dial thickness gauge 24 h after the TNCB challenge, and changes in swelling were calculated from the value pre-exposure. Compound **29** was administered orally 1 h before exposure to TNCB, and 0.5% MC was administered orally in negative control and control animals.

Acknowledgments

The authors are grateful to the staff of the Division of Analytical Science Laboratories for the elemental analysis and spectral measurements.

References and notes

- Yonetoku, Y.; Kubota, H.; Okamoto, Y.; Toyoshima, A.; Funatsu, M.; Ishikawa, J.; Takeuchi, M.; Ohta, M.; Tsukamoto, S. *Bioorg. Med. Chem.*, in press, doi:10.1016/ j.bmc.2006.03.024.
- Mori, Y.; Mikala, G.; Varadi, G.; Kobayashi, T.; Koch, S.; Wakamori, M.; Schwartz, A. *Jpn. J. Pharmacol.* 1996, 72, 83.
- (a) Hoth, M.; Penner, R. *Nature* 1992, 355, 353; (b) Lewis, R. S.; Cahalan, M. D. *Annu. Rev. Immunol* 1995, *13*, 623; (c) Clementi, E.; Meldolesi, J. *Cell Calcium* 1996, *19*, 269; (d) Geiszt, M.; Kapus, A.; Nemet, K.; Farkas, L.; Ligeti,

E. J. Biol. Chem. 1997, 272, 26471; (e) Clapham, D. E. Cell 1995, 80, 259; (f) Petersen, O. H.; Gerasimenko, O. V.; Gerasimenko, J. V.; Mogami, H.; Tepikin, A. V. Cell Calcium 1998, 23, 87; (g) Berridge, M. J.; Irvine, R. F. Nature 1989, 341, 197; (h) Putney, J. W., Jr. Cell Calcium 1990, 11, 611; (i) Randriamampita, C.; Tsien, R. Y. Nature 1993, 364, 809; (j) Fasolato, C.; Innocenti, B.; Pozzan, T. Trends Pharmacol. Sci. 1994, 15, 77; (k) Berridge, J. M. Biochem. J. 1995, 312, 1; (l) Hoth, M. Pflügers Arch. 1995, 430, 315; (m) Fanger, C. M.; Hoth, M.; Crabtree, G. R.; Lewis, R. S. J. Cell Biol. 1995, 131, 655; (n) Zweifach, A.; Lewis, R. S. J. Gen. Physiol. 1996, 107, 597.

- (a) Slaughter, R. S.; Garcia, M. L.; Kaczorowski, G. J. *Curr. Pharm. Des.* **1996**, *2*, 610; (b) Cahalan, M. D.; Chandy, K. G. *Curr. Opin. Biotechnol.* **1997**, *8*, 749.
- Chung, S. C.; McDonald, T. V.; Gardner, P. Br. J. Pharmacol. 1994, 113, 861.
- Christian, E. P.; Spence, K. T.; Togo, J. A.; Dargis, P. G.; Warawa, E. Br. J. Pharmacol. 1996, 119, 647.
- Felder, C. C.; Ma, A. L.; Liotta, L. A.; Kohn, E. C. J. Pharm. Exp. Ther. 1991, 257, 967.
- Kubota, H.; Yonetoku, Y.; Sugasawa, K.; Funatsu, M.; Kawazoe, S.; Toyoshima, A.; Okamoto, Y.; Ishikawa, J.; Takeuchi, M.; WO 9919303; *Chem. Abstr.* 1999, 130, 311815.
- 9. Das, M.; Livingstone, S. E. Aust. J. Chem. 1974, 27, 2109.
- Nugent, R. A. WO 9203451; Chem. Abstr. 1992, 119, 28357.
- 11. Neubauer, H. J.; Kuenast, C.; Hofmeister, P. Chem. Abstr. 1989, 111, 174087, DE3732541.
- (a) Ref. 7; (b) Timmerman, L. A.; Clipstone, N. A.; Ho, S. N.; Northrop, J. P.; Crabtree, G. R. *Nature* 1996, 383, 837.
- Virgilio, F. D.; Milani, D.; Leon, A.; Meldolesi, J.; Pozzan, T. J. Biol. Chem. 1987, 262, 9189.
- Djuric, S. W.; BaMaung, N. Y.; Basha, A.; Liu, H.; Luly, J. R.; Madar, D. J.; Sciotti, R. J.; Tu, N. P.; Wagenaar, F. L.; Wiedeman, P. E.; Zhou, X.; Ballaron, S.; Bauch, J.; Chen, Y.-W.; Chiou, X. G.; Fey, T.; Gauvin, D.; Gubbins, E.; Hsieh, G. C.; Marsh, K. C.; Mollison, K. W.; Pong, M.; Shaughnessy, T. K.; Sheets, M. P.; Smith, M.; Trevillyan, J. M.; Warrior, U.; Wegner, C. D.; Carter, G. W. J. Med. Chem. 2000, 43, 2975.
- Tiegs, G.; Hentschel, J.; Wendel, A. J. Clin. Invest. 1992, 90, 196.
- Ishikawa, J.; Ohga, K.; Yoshino, T.; Takezawa, R.; Ichikawa, A.; Kubota, H.; Yamada, T. J. Immunol. 2003, 170, 4441.