

www.elsevier.nl/locate/carres

CARBOHYDRATE RESEARCH

Carbohydrate Research 324 (2000) 149-160

Studies on the origin of stereoselectivity in the synthesis of 1,2-trans glycofuranosyl azides

Anton Štimac¹, Jože Kobe*

National Institute of Chemistry, Hajdrihova 19, 1115 Ljubljana, Slovenia Received 5 August 1999; accepted 24 October 1999

Abstract

The stereoselectivity of the 1,2-trans directed, Lewis acid-catalysed azidation of peracylated furanoses was found to depend on the reactivity of the azide donor (azide nucleophilicity) and the configuration at the anomeric centre relative to the neighbouring 2-*O*-acyl group. Reactions of 1,2-trans glycosyl esters with highly nucleophilic azide donors, generated from SnCl₄ and Me₃SiN₃, were stereospecific. The results are interpreted in terms of the rapid reaction of the azide species with bicyclic 1,2-acyloxonium (1,2-*O*-alkyliumdiyl-D-glycofuranose) ions, which were the primarily formed reactive intermediates. When using 1,2-cis glycosyl esters as starting materials the selectivity was reduced (90–94% de); the same is true with 1,2-trans counterparts if less nucleophilic Me₃SiN₃ in combination with Me₃SiOTf catalyst was used. This occurred due to the appearance of the more reactive but less selective oxocarbenium (glycofuranoxonium) ions either as primarily formed reactive intermediates in the former case or after equilibration with acyloxonium ions in the latter case. Protected 1,2-trans β-D-glycofuranosyl azides with ribo, xylo and 3-deoxy-erythro-pento configurations were best prepared from the corresponding glycosyl esters using 0.05 equivalents of SnCl₄, i.e., under anomerization-free conditions. Azidation of methyl glycofuranosides proceeds with inferior (80–90% de) and less predictable selectivity irrespective of the starting anomeric configuration. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: 1,2-trans Glycofuranosyl azides, synthesis; Azidation, stereoselective; Anomerization; Oxonium ions; Stannic chloride catalysis; Trimethylsilyl triflate catalysis

1. Introduction

Glycosyl azides [1] serve as valuable carbohydrate building blocks, especially as precursors to glycosylamines and heterocyclic derivatives such as 1,2,3-triazoles. Accordingly, several methods for their synthesis were developed, which proved to be quite general with respect to the desired relative configura-

E-mail address: joze.kobe@ki.si (J. Kobe)

tion at C-1 and C-2 of the sugar. As a part of our programme towards a linear synthesis of 1,2,3-triazolo[4,5-c]pyridine nucleoside analogues [2] via the 1,2,3-triazole nucleosides, several β-D-pentofuranosyl azides were required, of which only those with the 1,2-trans configuration will be considered in this article. acid-catalysed The Lewis reaction of trimethylsilyl azide (Me₃SiN₃) with glycosyl esters possessing a participating 2-O-acyl group proved to be the most efficient and reliable method for the preparation of 1,2trans glycosyl azides [1]. In fact, the azidation of pyranosyl esters [1,3,4] was consistently reported to be stereospecific regardless of the

^{*} Corresponding author. Tel.: + 386-61-1760-200; fax: + 386-61-1259-244.

¹ Present address: Krka, d. d., Novo mesto; Šmarješka c. 6, 8501 Novo mesto, Slovenia.

anomeric configuration of the starting ester, while the selectivity of aldofuranosyl counterparts was reduced in several cases [5,6]. The efficiency of this azidation approach in terms of the chemical yield and selectivity makes it undoubtedly the method of choice; however, a rather wide selection of catalysts and their amounts used (usually nearly equimolar) were not so clearly evident. Recently, Matsubara and Mukaiyama [4] reported for the first time a truly catalyst-aided synthesis of pyranosyl azides by taking advantage of $SnCl_4$ -AgClO₄ systems in dichloromethane or ytterbium(III) triflate in nitromethane (0.05-0.2 equivalents). In addition, we [6] and others [5,7] have pointed out that the azidation of furanosyl esters could be carried out conveniently using only catalytic amounts of selected Lewis acids like SnCl₄ or Me₃SiOTf. Thus, of several catalysts tested in substoichiometric amounts, the azidation of 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (1β) with Me₃SiN₃ dichloromethane at ambient temperature was completed only with $SnCl_4$ (0.05 equivalents, 12 h) and Me₃SiOTf (0.1 equivalents, 9 days) [6]. These experiments revealed another rather unexpected observation that, contrary to other catalysts which gave the 1,2-trans azide 2β exclusively, the Me₃SiOTf reaction is much less selective ($\beta:\alpha = 17:3$). In continuation of the previous work [6], a more detailed mechanism of azidation in non-nucleophilic solvents, like dichloromethane, is proposed herein, which provides a reasonable explanation for the exclusive formation of the β -azide **2B** in the SnCl₄-catalysed reaction as well as the reduced selectivity in the case of the Me₃SiOTf reaction. Showing advantages over other catalysts, SnCl₄ was employed for the highly stereoselective synthesis of 1,2-trans azides with β -D-ribofuranosyl-, β -D-xylofuranosyl-, 3-deoxy- β -D-*erythro*-pentofuranosyl-, and β -D-galactopyranosyl configurations.

2. Results and discussion

Stereochemistry of the reaction of 1β with Me_3SiN_3 . Mechanistic considerations.—A set of azidation experiments of 1β with Me_3SiN_3 in the presence of $SnCl_4$ or Me_3SiOTf was carried out under various reaction conditions

(Table 1). It is evident from Table 1 that the former is a considerably more efficient catalyst for any comparable set of reaction conditions. In view of the superior 1,2-trans selectivity observed in SnCl₄-catalysed reactions [1,3,4,6] (formation of 1,2-cis azides from peracylated aldoses has never been reported), it was rather surprising to find that the initially formed β -azide 2β underwent slow anomerization in the presence of this Lewis acid, if the reaction was continued after consumption of 1β . This effect was particularly noticeable at higher catalyst loadings (entries 2 and 3), but was completely absent with our optimized reaction conditions equivalents. (0.05)entry 1). Anomerization of the initially formed β -azide 2β during the reaction may also give both anomers in the Me₃SiOTf-catalysed azidation. However, this hypothesis was disproved after several control anomerizations of 2β were carried out by means of Me₃SiOTf and SnCl₄ in

Table 1									
Catalysed	azidation	of 1B	with	Me ₃ SiN ₃	in	CH ₂ Cl ₂	at	23	°C

Entry	Catalyst (equiv.)	Time	Yield of $2\beta + 2\alpha$ (%) ^a	2β:2α
1 ^b	SnCl ₄ (0.05)	12 h	quant	100:0
2	$SnCl_4(1)$	10 min	98	93:7
3	$SnCl_4(1)$	7 days	90.5	64:36
4 ^b	$Me_3SiOTf(0.1)$	9 days	quant	85:15
5	Me_3SiOTf (0.5)	6 days	quant	86:14
6	Me ₃ SiOTf (1)	33 h	98	86:14
7	Me ₃ SiOTf (1)	21 days	96	85:15
8 °	Me ₃ SiOTf (1)	128 h ^d	95.5 °	80:20

^a Crude product.

^b Data from Ref. [6].

 $^{\rm c}$ Reaction carried out in a 1:1 mixture of $\rm CH_2Cl_2-Me_3SiOAc.$

^d Reaction proceeded to $\sim 95\%$ conversion.

 e Contaminated with $\sim 5\%$ of acetates 1β and 1α (3:2).

the presence or absence of trimethylsilyl acetate (Me₃SiOAc), a side product of the glycosylation of 1β with silvlated nucleophiles [8]. The anomerization of 2α [6] as well as 2β (see Table 2 and entry 3 of Table 1) indicates the equilibrium composition of $64:36 \pm 2$ in favour of 2β at 23 °C in dichloromethane. This value is quite different from that $(\beta:\alpha =$ 86:14+1) consistently found in the Me₃SiOTf-catalysed azidation of 1β , as well as the anomerization of 2β , in the presence of Me₃SiOTf and Me₃SiOAc (1 equivalent each). Under conditions where the azidation of 1β is complete within 1-1.5 days (Table 1, entry 6), only ~ 2% of the pure 2β would anomerize within this time interval. Moreover, unlike the SnCl₄-catalysed reaction under optimized conditions (entry 1, Table 1), which revealed only

Table 2 Anomerization of 2β in CH₂Cl₂ at 23 °C

Entry	Catalyst (equiv)	Additive (equiv)	Time (days)	2β:2a
1	SnCl ₄ (0.5)	none	8	64:36
2	$SnCl_4$ (0.5)	Me ₃ SiOAc (1)	8	62:38
3	Me ₃ SiOTf (1)	none	1.5	67:33
4	Me ₃ SiOTf (1)	none	5.5	61:39
5	Me ₃ SiOTf (1)	none	11.3	62:38
6	Me ₃ SiOTf (1)	Me ₃ SiOAc (1)	5.5	92:8
7	Me ₃ SiOTf (1)	Me ₃ SiOAc (1)	11.3	90:10
8	Me ₃ SiOTf (1)	Me ₃ SiOAc (1)	21	86:14
9	$Me_3SiOTf(1)$	Me_3SiOAc (1)	40	87:13

Scheme 1. Reagents and conditions: (a) Me_3SiN_3 (1.1 equiv), Me_3SiOTf (0.5 equiv), CH_2Cl_2 , 3 h; then HCO_3^- , H_2O ; (b) silica gel chromatography.

the presence of the unreacted starting material 1β and the product 2β , the Me₃SiOTf reaction appeared more complex (TLC data). When the latter reaction in the presence of 0.5 equivalents of Me₃SiOTf was quenched at the initial stage (after 3 h) and worked up, the crude reaction mixture contained six components (from ¹H NMR data) in fractions given in Scheme 1.

In Scheme 1, the $2\beta:2\alpha$ ratio of 84:16 was estimated to be almost identical (within an experimental error) to the ratio observed after complete consumption of the starting material (86:14; entry 5, Table 1). Virtually constant ratios throughout the progress of azidation suggests the existence of common intermediates for the unselective formation of both azides with the anomerization of 1β taking place as a side reaction. By analogy to the anomerization of peracylated aldoses, e.g., β glucose pentaacetate [9], these data clearly point to the intermediacy of the oxocarbenium ion \mathbf{B}^+ (2,3,5-tri-*O*-benzoyl-D-ribofuranoxonium cation) formed from the more stable 1,2-benzoxonium ion A^+ (3,5-di-O-benzoyl-1,2-*O*-phenylmethyliumdiyl-α-D-ribofuranose cation) [8,10].

After chromatography on silica gel, the third anomeric pair of products, 2,3,5-tri-O-benzoyl-D-ribofuranose ($3\alpha\beta$) [11] was isolated as an inseparable mixture accompanied by a small amount of 1,3,5-tri-O-benzoyl- α -D-ribofuranose (4) [12] in 11% combined yield. Compound 4 is an artefact, which originated from

 3α through $2 \rightarrow 1$ migration of the benzoyl group during chromatographic separation. The structures of these compounds were determined by comparison of ¹H and ¹³C NMR data with those reported [11,12b,c], as well as by transformation of a mixture of 3β , 3α , and 4 into a mixture of known derivatives 18. 1α [11a,13], and 2-O-acetyl-1,3,5-tri-O-benzoyl- α -D-ribofuranose [12b] by acetylation. The identification of compounds 3β and 3α provides indirect evidence for the existence of a relatively stable, long-lived 1,2-benzoxonium ion A^+ (for an indirect ¹H NMR evidence of this cation, see Ref. [14]). Cyclic acyloxonium (1,3dioxolan-2-ylium) ions [15] like A⁺ are ambident electrophiles [16], which can react with nucleophiles to give products of either kinetic or thermodynamic control. Unlike the azide nucleophile, which reacts at the anomeric centre (thermodynamic product), water [15,16] always reacts in a kinetic sense (at C-2 of the 1,3-dioxolan-2-ylium ring). In the case of the A^+ ion a cyclic hemiorthoester [12a,17] is formed, which decomposes spontaneously to

furnish 3α , a product with retained stereochemistry of the benzoxonium ion A^+ . Although only 3α would be expected to appear in the crude product mixture, the anomeric hydroxy group is inevitably subjected to the anomerization process during mildly alkaline workup manipulations, resulting in the mixture of anomers and, eventually, the rearranged product 4 (Scheme 2). Since the oxocarbenium ion \mathbf{B}^+ is apparently much more reactive (less stable) and, consequently, would be present in a negligible concentration, it is of interest that the concentration of A^+ amounted to $\sim 16\%$ of the total product composition at the moment of trapping with water.

Based on the fact that Me_3SiN_3 is a relatively weak nucleophile and reacts with the ion A^+ very slowly or not at all, the mechanism of the Me_3SiOTf-catalysed azidation of 1β can now be rationalized, as shown in Scheme 3.

The stereochemical course of azidation will depend on the equilibrium composition of A^+ and B^+ , their relative reactivities towards Me₃SiN₃ and Me₃SiOAc, and the concentration of both nucleophiles. The presence of Me₃SiOAc obviously triggers additional equilibria that are responsible for the observed ratio of azides (β : α = 43:7), which is substantially shifted from the intrinsic equilibrium value (β : α = 16:9).

Stereochemistry of the oxocarbenium triflate ion pair $B^+OTf - .- The outcome of the$ stereochemistry attributed to B^+OTf^- should reside in the neighbouring group effect, which favours the β -triflate ion pair β -B⁺OTf⁻. This could be formed by the approach of the triflate anion to the anomeric position of A^+ from the β -face, while the C–O bond of the 1,3-dioxolan-2-ylium ring is being cleaved. Since its lifetime is very short, the ion pair β -B⁺OTf⁻ reverts either to the bicyclic ion A^+OTf^- or reacts with an external nucleophile almost instantaneously with predominant α -selectivity, before efficient equilibration between β - and α -triflate ion pairs could take place (Scheme 4).

The above explanation may find support in the allylation of our model substrate 1β with allyltrimethylsilane [18], which was reported to be markedly α -selective under any conditions. This fact may reflect the inability of the cyclic ion \mathbf{A}^+ to react with weak carbon nucleophiles; that is why the oxocarbenium ion \mathbf{B}^+ could be responsible for the final product distribution. A general trend of α -selectivity deriving from oxocarbenium triflate ion pairs indicates that the bulk of 2β should arise from the attack of Me₃SiN₃ on the benzoxonium ion \mathbf{A}^+ .

Mechanistic alternatives.—The formation of 2α in the Me₃SiOTf-catalysed azidation could take place by at least three additional mechanistic pathways; however, no firm evidence exists in favour of any pathway.

Direct $S_N 2$ substitution at C-1. Direct displacement of Me₃SiOAc on the complex of the substrate and Me₃SiOTf by Me₃SiN₃, assuming the absence of the anchimeric assistance by the 2-O-benzoate group, hardly seems to be a noticeable alternative to the more favourable anchimerically assisted intramolecular displacement. An efficient $S_N 2$ substitution requires a powerful nucleophile, which is not the case with Me₃SiN₃. Besides, as shown below, stronger azide donors than Me₃SiN₃ drive the reaction towards the increased β -selectivity.

2-Azido-1,3-dioxolane intermediates. To the best of our knowledge, the isolation or detection of 2-azido-1,3-dioxolane intermediates has never been reported in the synthesis of glycosyl azides. The hypothetical kinetic diastereoisomeric intermediate C could transform thermally or in the presence of Lewis acids, via the ion A^+ , into the thermodynamic products 2β and 2α . However, its appearance does not seem to be very likely because the relatively high stability of some non-carbohydrate derived 2-azido-1,3-dioxolanes towards protic acids [19] and temperature [20] suggests comparable stability of C.

Ring-opening mechanism. The competitive complexation of Me₃SiOTf with the furanose ring oxygen results in the endocyclic cleavage of the C(1)–O(4) bond and the formation of

either an acyclic oxocarbenium ion or a monocyclic benzoxonium ion. The azidation of both with Me₃SiN₃ and subsequent Lewis acid-promoted recyclization would occur with a low selectivity and co-formation of acyclic by-products [21]. It is of interest to point out that no acyclic intermediates or by-products were identified in any of the azidation reactions of 1β . With the hope of trapping the acyclic 4-O-silylated derivative, being more resistant towards subsequent recyclization, Me₃SiOTf was replaced by tert-butyldimethylsilyl triflate (0.5 equivalents) in a particular experiment. This reaction, however, proceeded analogously and without major differences from that given in Table 1 (entry 5). For this reason, the endocyclic cleavage in the catalysed azidation of glycosyl esters is not to be expected.

Effect of the azide nucleophilicity.—In contrast to the poorly selective Me₃SiOTfcatalysed reaction mentioned above, the SnCl₄-catalysed azidation of 1β is stereospecific and, therefore, must proceed exclusively through the benzoxonium ion A^+ ; Me₃SiN₃ acts as a nucleophile in both cases. The reaction of Me₃SiN₃ with SnCl₄ in dichloromethane at ambient temperature is known to first result in a soluble dimer [Me₃SiCl· $Cl_2Sn(N_3)_2l_2$, which was then slowly transformed into a final insoluble polymeric product $[Cl_2Sn(N_3)_2]_n$ [22]. The soluble dimer, some higher oligomer, and/or their complex with a leaving group comprise probable azide donors of increased nucleophilicity in the SnCl₄-catalysed reaction of 1β with Me₃SiN₃. The benzoxonium ion A^+ is intercepted by the highly reactive azide donor immediately after its formation, before the isomerization to the oxocarbenium ion \mathbf{B}^+ could take place. Since the cation A^+ has only a momentary existence, it could never be detected in the form of its hydrolysis products 3β and 3α by TLC analysis of the azidation progress.

The observation that the highly nucleophilic tin-azido species are responsible for the specificity observed has been further confirmed by a set of experiments in which trimethyltin azide (Me_3SnN_3) and tributyltin azide (Bu_3SnN_3), with precisely defined structures, were employed as azidation agents (Table 3).

Table 3					
Azidation	of	1β	with	trialkyltin	azides

Entry	Catalyst (equiv)	Azide	Solvent	Time (days)	2β:2α
1	Me ₃ SiOTf (1)	Me ₃ SnN ₃	CH ₂ Cl ₂	5.5	96:4
2	Me ₃ SiOTf (1)	Bu ₃ SnN ₃	CH ₂ Cl ₂	8	97:3
3	none	Bu ₃ SnN ₃	neat	8	100:0

The stereoselectivity of the Me₃SiOTfcatalysed azidation can be greatly improved simply by substituting more nucleophilic trialkyltin azides [23] for Me₃SiN₃. Bu₃SnN₃ as solvent (70 °C, 8 days, ~ 95% conversion) can function as an azide donor and a weak Lewis acid. Compound 2β was isolated in about 70% yield along with a few unidentified side products. In this case, complete exclusion of either 1α or 2α was determined by ¹H NMR and TLC analyses.

Stereoselectivity of the SnCl₄-catalysed azidation. Substrate structure effect.—Superior selectivity and efficiency of the azidation of 1β in comparison with other catalysts tested [6] suggested $SnCl_4$ (0.05 equivalents) for the 1,2trans directed azidation of some other glycosyl substrates with Me₃SiN₃ (Scheme 5). In all cases examined (Table 4), reactions proceeded with 80-100% de selectivities in favour of 1,2-trans azides depending on the nature and configuration of the anomeric substituent relative to the 2-O-acyl group. The available 1,2cis esters 1α and 8α displayed slightly reduced selectivities in comparison with their 1,2-trans counterparts 1β and 8β , because the corresponding oxocarbenium ions are formed as the first reactive intermediates after dissociation of the glycosidic bond. The highly nucleophilic azidation reagent intercepts the oxocarbenium ions, to a small extent, before they completely isomerize to the more stable acyloxonium ions. Trace amounts of α -azides 9α and 13α were detected in case of the azidation of 8β and 12β , presumably due to the contamination of starting materials with 1,2-cis esters 8 α (5%) and 12 α (~10%), respectively. For the same reason, a small amount of the α azide 11α could also be expected to form from α,β -D-xylofuranose tetraacetate (10 $\alpha\beta$, 2:1 α : β mixture). The last example in Table 4 (entry 10) clearly demonstrates that the azidation of furanosyl and pyranosyl esters proceeds at comparable rates using much lower quantities of $SnCl_4$ than previously reported [1,3].

The azidation of methyl glycofuranosides 5β and 14β resulted in the predominant formation of the β -azides 2β and 15β with 90 and 80% de, respectively, being much inferior to those starting from the appropriate acetates 1β and 12β . The origin of minor quantities of 1,2-*cis* products 2α and 15α is not completely clear and points to the involvement of alternative mechanisms, e.g., the furanose ring opening.

Conclusions.-Furanose sugars turned out to be more useful probes for studying stereochemical effects of the azidation than their pyranose counterparts. The Lewis acidcatalysed reactions of pyranosyl esters with Me_3SiN_3 were reported [1,3,4] to be stereospecific without exception, while at least two properties affect the stereoselectivity in the furanosyl series, namely, the azide nucleophilicity and the nature of the substrate structure. When both effects are favourable, like in the case of 1,2-trans glycosyl esters and a Lewis acid capable of generating more nucleophilic azidating species after reaction with Me_3SiN_3 (e.g., $SnCl_4$), the azidation was stereospecific in all cases examined. This occurs because the 1,2-acyloxonium ion is primarily formed, which is rapidly captured by the nucleophile before isomerization to less selective reactive intermediates takes place. Glycosyl esters are also preferred starting materials over glycosides in the presence of the SnCl₄ catalyst.

Table 4 SnCl₄-catalysed azidation of various sugar derivatives with Me_3SiN_3 in CH_2Cl_2 at 23 °C $^{\rm a}$

Entry	Substrate	Time (h)	Product(s)	Yield (%) ^b	β:α °	$[\alpha]_{\mathrm{D}}(c)^{\mathrm{d}}(^{\circ})$
1 e	1β	12	2β	95	100:0	-45 (3.11)
2	1α	30	$2\beta + 2\alpha^{f}$	100	95:5	
3	5β	30	$2\beta + 2\alpha^{g}$	91	95:5	
4 ^e	6β	12	- 7β	97	1:0 ^h	-149(1.0)
5	8α	4	9β	97	97:3	-73 (4.00)
			9α	2.4		+170(0.99)
6	8αβ ⁱ	2	9 B	94	> 200:1	-72 (4.00) ^m
7	10αβ ^j	24	11β	88	nd ¹	$-129(2.20)^{n}$
8	12αβ ^k	12	13β	74	124:1	$-171(1.11)^{m}$
9	14β [.]	12	15β	86	90:10	-150(4.00)
	•		15α	7		+85(4.00)
10	16	12	17	70	100:0	-14.6 (2.885) °

^a Molar ratio of substrate: Me_3SiN_3 : $SnCl_4 = 1:1.1:0.05$, except for entries 3 and 9, where 1.5 mol equiv of Me_3SiN_3 was used.

^b Yields after chromatography and/or crystallization, crude yields are given for entries 2 and 3.

^c Anomeric ratio determined from the ¹H NMR spectrum of the crude product mixture.

^d Measured for solutions in CHCl₃ at 25 °C, unless stated otherwise.

^e Data from Ref. [6].

^f Contaminated with 1α (8%), 1β hardly detectable.

 g Contaminated with a mixture of 5β and 5α (11%) in a 7:4 ratio.

^h The corresponding α anomer was not identified.

 $^{i}\beta:\alpha = 19:1.$

 $j \alpha: \beta = 2:1.$

^k $\beta: \alpha = 9:1.$

¹Not determined, the corresponding α anomer was not identified.

^m Measured at 26 °C.

ⁿ Measured in ethyl acetate at 24 °C.

° Measured at 20 °C; lit. $[\alpha]_{D}^{20}$ –16.2° (*c* 2.885) [33].

3. Experimental

General methods are those reported in Ref. [6]. NMR spectra were recorded for solutions in CDCl₃. Optical rotations were measured with a Perkin–Elmer 241 MC polarimeter. All reactions were carried out in a dry inert atmosphere.

Materials.—Dichloromethane (Fluka), kept over molecular sieves, was used as solvent. 1-*O*-Acetyl-2,3,5-tri-*O*-benzoyl- β -D-ribofuranose (**1** β) and tetra-*O*-benzoyl- α -D-xylofuranose (**8** α) were supplied by Pfanstiehl under names that did not specify the anomeric configuration. Analysis of commercial samples (**1** β : ivory coloured powder with mp 127– 128.5 °C; $[\alpha]_{D}^{26}$ + 41.8° (*c* 1.32, CHCl₃); colourless needles after crystallization from isopropanol: mp 129–130 °C, lit. mp 131– 132 °C [24]; $[\alpha]_{D}^{26}$ + 42.3° (*c* 1.32), lit. $[\alpha]_{D}^{25}$ + 42.2° (*c* 1.32) [24]; ¹H NMR [12b,13]. **8** α : mp 165–166.5 °C, lit. mp 164–165 °C [25]; $[\alpha]_{D}^{25}$ + 167° (c 1.10, CHCl₃), lit. $[\alpha]_{D}^{20}$ + 170° (c 1.1) [25]; ¹H NMR [12b,26]) revealed that both materials were configurationally homogeneous. Tetra-*O*-acetyl- α , β -D-xylofuranose $(10\alpha\beta)$ was obtained from the same supplier and was bulb-to-bulb distilled before use at a bath temperature of 175 °C and ~ 0.01 mbar. The distillate contained mainly 10α and 10β in a 2:1 ratio. Methyl 3-deoxy-2,5-di-O-benzoyl- β -D-*ervthro*-pentofuranoside (14 β : mp 82– 83 °C (hexane), lit. mp 80.5–81.5 °C [27b]) was conveniently prepared in five steps from 1,2-di-O-isopropylidene-5-O-methoxycarbonyl-3-O-tosyl- α -D-xylofuranose (Pfanstiehl), following the reported procedures [27].

Methyl 2,3,5-*tri*-O-*benzoyl*- β -D-*ribofuran*oside (**5** β).—This compound was prepared [28] from **7** β [6] after final purification by chromatography with CH₂Cl₂: $[\alpha]_D^{25} + 58^\circ$ (*c* 0.94, CHCl₃), lit. $[\alpha]_D + 58^\circ$ [29]; ¹H NMR: δ 3.42 (s, 3 H, OMe), 4.52 (dd, 1 H, H-5a), 4.70–4.76 (m, 2 H, H-4, 5b), 5.16 (s, 1 H, H-1), 5.68 (d, 1 H, H-2), 5.88 (dd, 1 H, H-3), 7.29–7.61, 7.87–7.91, and 8.0–8.10 (3 m, 15 H, Ar–H), $J_{2,3}$ 4.9, $J_{3,4}$ 6.6, $J_{4,5a}$ 6.3, $J_{5a,5b}$ 12.8 Hz.

Tetra-O-*benzoyl*- α , β -D-*xylofuranose* (8 $\alpha\beta$). —The crude anomeric mixture ($\beta:\alpha = 7:10$) was prepared from 1,2-O-isopropylidene-a-Dxylofuranose (Pfanstiehl) (30 g, 0.158 mol) by the method of Holy [26] and subsequently highly enriched in favour of the β anomer. This was first flash chromatographed with 10:1 petroleum ether-EtOAc, followed by CH₂Cl₂. A fraction, containing $\sim 50\%$ of the β anomer, was fractionally crystallized several times from EtOAc, then several times from acetone to remove the majority of 8α . The concentrated mother liquor enriched with the β isomer was freed from unknown by-products by chromatography with a $10:1 \rightarrow 2:1$ gradient of petroleum ether-1% AcOH in EtOAc. After concentration, the appropriate fractions were crystallized twice, first from 5:1 MeOH-acetone, followed by MeOH to give **8** β (1.20 g, 1.3%), contaminated with ~ 5% of the α anomer. The crystalline material contained two kinds of crystals with a sharp melting range, for the most part plates with mp 111–113 °C along with some needles with mp 151–153 °C, lit. mp 108–109 °C [25]; [α]_D²⁵ +18.2° (c 1.00, CHCl₃); lit. $[\alpha]_D^{20}$ +11.2° (c 1.0) [25]; ¹H NMR: δ 4.66–4.76 (m, 2 H, H-5a,5b), 5.11 (pseudo q, 1 H, J 5.7 Hz, H-4), 5.82 (d, 1 H, H-2), 5.96 (dd, 1 H, H-3), 6.67 (s, 1 H, H-1), 7.33-7.66 and 7.95-8.12 (2 m, 20 H, Ar–H), J_{2.3} 1.0, J_{3.4} 5.0 Hz; ¹H NMR [12b]; ¹³C NMR: δ 62.84, 74.52, 80.03, 80.47, 99.49 (C-1 to C-5), 128.3–130.0 and 133.1–133.8 (Ar-C), 164.73 (2 CO), 164.96 and 166.04 (2 CO). This material was used for the azidation without further manipulations.

5-O-Benzoyl-3-deoxy-1,2-di-O-acetyl- α,β -Derythro-pentofuranose (12 $\alpha\beta$).—This compound was prepared [30] in five steps from 1,2-O-isopropylidene- α -D-xylofuranose and subsequently purified by chromatography (50:1 CH₂Cl₂-Et₂O): $[\alpha]_{D}^{25} - 29.4^{\circ}$ (c 1.25, CHCl₃), lit. $[\alpha]_{D}^{30} - 27.2^{\circ}$ [30b]. Although a single spot by TLC analysis, the ¹H NMR spectrum revealed the presence of 12 β , 12 α , and two unknown contaminants in a 81:10:5:4 ratio. ¹H NMR data for **12** β : δ 1.96 and 2.10 (2 s, each 3 H, 2 OCOCH₃), 2.17–2.33 (m, H-3 α ,3 β), 4.34 (dd, 1 H, H-5a), 4.55 (dd, 1 H, H-5b), 4.73 (dddd, 1 H, H-4), 5.24 (dd, 1 H, H-2), 6.20 (s, 1 H, H-1), 7.42–7.49, 7.55–7.61, and 8.04–8.10 (3 m, 5 H, Ar–H), $J_{2,3\alpha}$ 1.1, $J_{2,3\beta}$ 4.6, $J_{3\alpha,4}$ 6.8, $J_{3\beta,4}$ 9.3, $J_{4,5a}$ 5.3, $J_{4,5b}$ 3.8, $J_{5a,5b}$ 11.9 Hz; ¹H NMR [30b]. ¹H NMR data for **12** α : δ 6.44 (d, $J_{1,2}$ 4.2 Hz, H-1).

Azidation of 1β with Me_3SiN_3 (Table 1).— To a solution of 1β (0.5–4 mmol scale) and Me_3SiN_3 (1.1 equiv) in the appropriate anhydrous solvent, was syringed the required amount of catalyst (neat Me_3SiOTf or 1 M solution of $SnCl_4$ in CH_2Cl_2) adjusting the final concentration to 3 mL of solvent per mmol of 1β . After being stirred for the time specified, the reaction mixture was quenched with satd aq NaHCO₃ and worked-up as described previously [6] (see also the general procedure below), except for entry 8, which was first concentrated and rediluted with CH_2Cl_2 . The $2\beta:2\alpha$ ratio was determined from the ¹H NMR spectrum of the crude mixture.

Anomerization of 2,3,5-tri-O-benzovl-β-Dribofuranosyl azide (2B) (Table 2).—To a solution of 2β (244 mg, 0.5 mmol) and, when necessary, Me₃SiOAc (75 µL, 0.5 mmol) in CH₂Cl₂ was syringed either neat Me₃SiOTf (90 µL, 0.5 mmol) or 1 M solution of SnCl₄ in CH₂Cl₂ (0.25 mL, 0.25 mmol), adjusting the final concentration to 3 mL of CH₂Cl₂ per mmol of 2β . After being stirred for the time specified, the reaction mixture (or 0.15 mL aliquot) was quenched and worked-up as usual. The $2\beta:2\alpha$ ratio was determined from the ¹H NMR spectrum of the crude mixture. Product mixtures from the anomerizations in the presence of Me₃SiOAc contained in addition $\sim 2-5\%$ of 1 β and 1 α .

Azidation of 1β with trialkyltin azides (Table 3)

With Me_3SnN_3 under Me_3SiOTf catalysis (entry 1). To a suspension of 1β (505 mg, 1 mmol) and Me_3SnN_3 (227 mg, 1.1 mmol) in CH₂Cl₂ (3 mL) was syringed Me_3SiOTf (180 µL, 1 mmol), whereby the azide dissolved almost instantaneously. The solution was stirred at room temperature (rt) for 5.5 days, then quenched and worked-up as usual. The crude semisolid product mixture (589 mg) was directly analysed by ¹H NMR spectroscopy. Crystallization from MeOH afforded **2** β (184 mg, 38%) with mp 66.5–67.5 °C, lit. mp 66–67.5 °C [6]; ¹H and ¹³C NMR [6].

With Bu_3SnN_3 under Me_3SiOTf catalysis (entry 2). A similar reaction on the same scale with Bu_3SnN_3 (365 mg, 1.1 mmol) took 8 days at rt. The crude product mixture consisted of two immiscible liquids and was further purified by dissolving in MeCN (10 mL) and washing with hexane (5 × 10 mL). Evaporation of MeCN left a colourless viscous oil (314 mg), which was analysed by ¹H NMR spectroscopy. Crystallization from MeOH gave **2** β (231 mg, 47%) with mp 67.5–68 °C.

With Bu_3SnN_3 only (entry 3). A suspension of 1β (101 mg, 0.2 mmol) and Bu_3SnN_3 (0.4 mL) was heated in an oil bath at 70 °C for 8 days. The reaction mixture was allowed to cool, diluted with MeCN (2 mL) and washed with hexane (5 × 2 mL). Evaporation of MeCN left a brown viscous liquid (112 mg), which was analysed by ¹H NMR spectroscopy (~70% yield of 2β).

Partial Me₃SiOTf-catalysed azidation of 1β with Me_3SiN_3 .—To a solution of 1β (2.02 g, 4 mmol) and Me₃SiN₃ (0.58 mL, 4.4 mmol) in CH₂Cl₂ (12 mL) was syringed Me₃SiOTf (0.36 mL, 2 mmol). The mixture was stirred at rt for 3 h, then quenched with satd aq $NaHCO_3$ (12 mL) and the aqueous phase was extracted with CH_2Cl_2 (12 mL). The combined organic solutions were dried (MgSO₄) and concentrated to give a mixture of products in fractions, given in Scheme 1, as a colourless oil (2.02 g). A portion of this mixture (1.86 g) was chromatographed on silica gel (125 g) with CH_2Cl_2 (2 L) collecting 50–60 mL fractions, followed by CH₂Cl₂-Et₂O (19:1, 0.8 L and 10:1, 0.7 L) collecting 50 mL fractions. First eluted was the pure compound 2β [717 mg, 40%; mp 67-69 °C (from MeOH)], followed by mixtures of 2β and 2α (68:32; 274 mg, 15%), **2\beta** and **2\alpha** (5:95; 93 mg, 5%), **1\beta** and **1\alpha** (96:4; 232 mg, 12.5%; crystallization from isopropanol gave pure 1 β with mp 128.5–130 °C; ¹H and ¹³C NMR spectra were in agreement with those of the starting material), and pure 1-O-acetyl-2,3,5-tri-O-benzoyl-a-D-ribofuranose [1a: 179 mg, 9.5%; IR (film): v 1726 (C=O), 1268 (benzoate C-O), 1227 (acetate C–O), 1134, 1110, 1024, and 708 cm⁻¹ (benzoate); ¹H NMR: δ 2.15 (s, 3 H, COCH₃), 4.62 (dd, 1 H, H-5a), 4.73 (dd, 1 H, H-5b), 4.83 (ddd, 1 H, H-4), 5.64 (dd, 1 H, H-2), 5.84 (dd, 1 H, H-3), 6.72 (d, 1 H, H-1), 7.30-7.62, 7.86-7.91, and 8.04-8.12 (3 m, 15 H, 3 Ph), $J_{1,2}$ 4.6, $J_{2,3}$ 6.4, $J_{3,4}$ 2.5, $J_{4,5a}$ 3.6, $J_{4,5b}$ 3.4, $J_{5a,5b}$ 12.1 Hz; ¹³C NMR: δ 21.02 (CH₃), 63.89 (C-5), 70.67 (C-3), 71.06 (C-2), 82.19 (C-4), 94.27 (C-1), 128.4-129.7, 133.34, 133.48, and 133.53 (Ar-C), 164.89, 165.56, and 166.02 (3 COPh), 169.52 (COCH₃); ¹H and ¹³C NMR [11a,13]; EIMS: m/z 461 ([M-COCH₃]⁺, $([M-OCOCH_3]^+, 11),$ 1.2%), 445 105 ([PhCO]⁺, 100)]. Last eluted was a mixture of **3** β , **3** α , and **4** in a 58:31:11 ratio (204 mg, 12%). Partial ¹H NMR data for 3β : 3.87 (d, OH), 5.64 (br d, J_{1.0H} 3.5 Hz, H-1), 5.69 (dd, J_{1.2} 0.8 Hz, H-2), 5.91 (dd, J_{3.4} 6.2, J_{2.3} 5.0 Hz, H-3); for 3α : 3.58 (d, OH), 5.49 (dd, $J_{2,3}$ 6.3 Hz, H-2), 5.79 (dd, J_{3.4} 3.3 Hz, H-3), 5.82 (dd, $J_{1,\text{OH}}$ 7.5, $J_{1,2}$ 4.3 Hz, H-1); for 4: 2.84 (d, $J_{2,\text{OH}}$ 10.5 Hz, OH), 5.60 (dd, J 6.5, 1.8 Hz, H-3), 6.69 (d, $J_{1,2}$ 4.5 Hz, H-1); ¹H and ¹³C NMR spectra are in agreement with those reported [11,12b,c] for individual components. A further confirmation of identity was achieved by acetylation [31] of a portion (140 mg) of this mixture by acetic anhydride (1 mL) in the presence of 4-(N,N-dimethylamino)pyridine (2) mg) at rt for 1 day. Work-up as usual afforded a mixture of 1β , 1α , and 2-O-acetyl-1,3,5-tri-*O*-benzoyl-α-D-ribofuranose [12b] (109 mg) in an 8:1:1 ratio as determined on the basis of known ¹H NMR spectra of individual components and TLC analysis.

General procedure for the $SnCl_4$ -catalysed azidation with Me_3SiN_3 .—To a solution of sugar derivative and Me_3SiN_3 (1.1 equiv for glycosyl esters, 1.5 equiv for glycosides) in CH_2Cl_2 (2 mL/mmol) was added 50 mM $SnCl_4$ in CH_2Cl_2 (1 mL/mmol). The mixture was stirred at rt for the time specified in Table 4, the reaction was quenched with satd aq $NaHCO_3$ (1.5 mL/mmol) and the aq phase extracted with an equal vol of CH_2Cl_2 (three times for acetates **13** β and **17**). The combined organic solutions were dried (MgSO₄) and concentrated to give a crude product or a mixture of anomers. Separation and purification was achieved as described for individual preparations.

Azidation of 1α .—The crude product mixture, obtained from 1α (36 mg, 71 µmol) in quantitative yield, contained compounds 2β , 2α and 1α in a 88:4:8 ratio as shown by ¹H NMR analysis.

Azidation of 5β .—The crude product mixture (444 mg), obtained from 5β (477 mg, 1 mmol), contained compounds 2β , 2α , 5β , and methyl 2,3,5-tri-*O*-benzoyl- α -D-ribofuranoside (5α) [32] in a 85:4:7:4 ratio as shown by ¹H NMR analysis.

2,3,5-Tri-O-benzoyl- β - (9 β) and α -D-xylo-furanosyl azide (9 α)

From compound 8a. Azidation of 8a (5.66 g, 10 mmol) afforded the crude product mixture (β : $\alpha = 97$:3), which was resolved by chromatography (CH₂Cl₂, H₂O content $\leq 0.01\%$). Both products were isolated as colourless viscous oils.

β-Azide **9**β: 4.73 g (97%); R_f 0.59 (CH₂Cl₂); IR (film): v 2115 (N₃), 1727 (C=O), 1262 (benzoate C–O), 1098, and 710 cm $^{-1}$ (benzoate); ¹H NMR: δ 4.71 (d, 2 H, H-5a,5b), 4.98 (dt, 1 H, H-4), 5.46 (br s, 1 H, H-2), 5.55 (s, 1 H, H-1), 5.88 (dd, 1 H, H-3), 7.37-7.63 and 8.00-8.10 (2 m, 15 H, Ar-H), J_{2,3} 1.2, J_{3,4} 4.9, $J_{4,5a} = J_{4,5b}$ 6.1 Hz; ¹³C NMR: δ 62.42 (C-5), 74.82 (C-3), 80.13 (C-4), 80.91 (C-2), 93.73 (C-1), 128.3-129.9, 133.16, 133.76, and 133.84 (Ar-C), 164.78, 165.00, 166.02 (3 CO); EIMS: m/z 445 ([M – N₃]⁺, 10%), 105 ([PhCO]⁺, 100); CIMS (NH₃): m/z 505 ([M + NH₄]⁺, 30), 445 ($[M - N_3]^+$, 33), 105 (100); IR, NMR and MS data are in agreement with the re-Calcd ported values [5a]. Anal. for C₂₆H₂₁N₃O₇ (487.47): C, 64.06; H, 4.34; N, 8.62. Found: C, 63.99; H, 4.45; N, 8.60.

α-Azide **9**α: 118 mg (2.4%); R_f 0.52; IR (film): v 2116 (N₃), 1727 (C=O), 1268 (benzoate C–O), 1110, and 710 cm⁻¹ (benzoate); ¹H NMR: δ 4.53–4.64 (2 m, 2 H, H-5a,5b), 4.96 (ddd, 1 H, H-4), 5.61 (pseudo t, 1 H, H-2), 5.96 (d, 1 H, H-1), 6.01 (dd, 1 H, H-3), 7.37–7.63 and 7.97–8.12 (2 m, 15 H, Ar–H), $J_{1,2}$ 5.0, $J_{2,3}$ 5.3, $J_{3,4}$ 6.2 Hz; ¹³C NMR: δ 62.12 (C-5), 74.86 (C-3), 75.62 (C-4), 77.03 (C-2), 89.67 (C-1), 128.4–130.0, 133.22, and 133.73 (Ar–C), 165.42, 165.48, 165.96 (3 CO); CIMS

(NH₃): m/z 505 ([M + NH₄]⁺, 2.5%), 460 ([M - N₂]⁺, 4.5), 445 ([M - N₃]⁺, 22), 105 ([PhCO]⁺, 100). Anal. Calcd for C₂₆H₂₁N₃O₇ (487.47): C, 64.06; H, 4.34; N, 8.62. Found: C, 64.01; H, 4.50; N, 8.47.

From compound $8\alpha\beta$. Azidation of $8\alpha\beta$ (567 mg, 1 mmol) afforded the crude product mixture containing less than 0.5% of 9α , which was purified by chromatography (CH₂Cl₂) to give 9β (456 mg, 94%), identical to the compound obtained from pure 8α above.

2,3,5-Tri-O-acetyl- β -D-xylofuranosyl azide (11 β).—From the distilled compound $10\alpha\beta$ (31.83 g, 0.1 mol), the reaction mixture was quenched by satd aq NaHCO₃ (120 mL) and the phases were allowed to separate overnight. The clear organic and the emulgated layers were treated with Celite (40 g) and, after 30 min, MgSO₄ (20 g). Stirring was continued for 1 h, the slurry was filtered through Celite and washed with CH₂Cl₂ (3×200 mL). The combined filtrate and washings were dried $(MgSO_4)$ and concentrated to give the crude product (29.9 g) as a yellow liquid. This was purified by chromatography (50:1 CH₂Cl₂-EtOAc) to yield pure 11β (26.56 g, 88%) as a slightly yellow liquid: IR (film): v 2117 (N₃), 1748 (C=O), 1373 (acetate CH₃), and 1226 cm⁻¹ (acetate C–O); ¹H NMR: δ 2.10, 2.12, and 2.14 (3 s, each 3 H, 3 OCOCH₃), 4.26 (dd, 1 H, H-5a), 4.37 (dd, 1 H, H-5b), 4.59 (ddd, 1 H, H-4), 5.04 (br s, 1 H, H-2), 5.19 (s, 1 H, H-1), 5.33 (dd, 1 H, H-3), $J_{2,3}$ 1.5, $J_{3,4}$ 4.6, $J_{4,5a}$ 7.1, $J_{4,5b}$ 4.9, $J_{5a,5b}$ 11.7 Hz; ¹³C NMR: δ 20.48, 20.57, and 20.67 (3 OCOCH₃), 61.76 (C-5), 74.05 (C-3), 79.49 (C-4), 80.32 (C-2), 93.31 (C-1), 169.07, 169.39, and 170.42 (3 OCOCH₃); EIMS: m/z 259 ([M – N₃]⁺, 50%), 139 ($[M - N_3 - 2 \text{ AcOH}]^+$, 100), 128 (93). Anal. Calcd for $C_{11}H_{15}N_3O_7$ (301.26): C, 43.86; H, 5.02; N, 13.95. Found: C, 44.30; H, 4.95; N, 13.82.

2-O-Acetyl-5-O-benzoyl-3-deoxy- β -D-erythro-pentofuranosyl azide (13 β).—Azidation of 12 $\alpha\beta$ (322 mg, 1 mmol) afforded the crude product mixture (β : α = 124:1), which was purified by chromatography (CH₂Cl₂) to give pure 13 β (222 mg, 74%) as a colourless oil; IR (film): ν 2113 (N₃), 1748 (acetate C=O), 1723 (benzoate C=O), 1377 (acetate CH₃), 1275 (benzoate C=O), 1231 (acetate C=O), 1125

(PhCOO-C), 1093, 1071, 1054, 1026, and 713 cm⁻¹ (benzoate); ¹H NMR: δ 2.09 (s, 3 H, OCOCH₃), 2.12–2.20 (m, 1 H, H-3α), 2.24 (ddd, 1 H, H-3β), 4.38 (dd, 1 H, H-5a), 4.58 (dd, 1 H, H-5b), 4.72 (dddd, 1 H, H-4), 5.05 (dd, 1 H, H-2), 5.44 (s, 1 H, H-1), 7.43-7.49, 7.55-7.61, and 8.07-8.12 (3 m, 5 H, Ar-H), $J_{2,3\alpha}$ 1.1, $J_{2,3\beta}$ 4.5, $J_{3\alpha,3\beta}$ 14.0, $J_{3\alpha,4}$ 6.6, $J_{3\beta,4}$ 9.5, $J_{4,5a}$ 5.5, $J_{4,5b}$ 3.5, $J_{5a,5b}$ 12.0 Hz; ¹³C NMR: δ 20.84 (CH₃), 31.43 (C-3), 65.82 (C-5), 77.89 (C-2), 78.58 (C-4), 94.30 (C-1), 128.40 (C-3',5'), 129.61 (C-2',6'), 129.67 (C-1'), 133.18 (C-4'), 166.28 and 169.97 (2 CO); FABMS: m/z 306 ([MH⁺], 6%), 263 ([M - N₃]⁺, 100), $([PhCO]^+, 92)$. Anal. Calcd for 105 C₁₄H₁₅N₃O₅ (305.29): C, 55.08; H, 4.95; N, 13.76. Found: C, 55.24; H, 4.79; N, 13.67.

α Anomer 13α could not be isolated due to the paucity of this material. Nevertheless, its presence in the crude mixture was identified by the SnCl₄-induced anomerization of pure 13β as described for 2β (entry 1 from Table 2). Compound 13α displayed a doublet ($J_{1,2}$ 4.5 Hz) for the anomeric proton, centered at δ 5.62 ppm.

3-Deoxy-2,5-di-O-benzoyl- β - (15 β) and - α -D-erythro-*pentofuranosyl azide* (15a).—Azidation of 14β (21.0 g, 59 mmol) afforded the crude product mixture ($\beta:\alpha = 9:1$), which was crystallized from MeOH to give pure 15ß (16.75 g, 77%) as colourless crystals: mp 59-61 °C; IR (film): v 2113 (N₃), 1723 (C=O), 1268 (benzoate C–O), 1109, and 711 cm $^{-1}$ (benzoate); ¹H NMR: δ 2.27–2.40 (m, 2 H, H- 3α , 3β), 4.41 (dd, 1 H, H-5a), 4.62 (dd, 1 H, H-5b), 4.82 (m, 1 H, H-4), 5.30 (m, 1 H, H-2), 5.60 (s, 1 H, H-1), 7.41-7.61 and 8.01-8.13 (2 m, 10 H, Ar–H), $J_{4,5a}$ 5.6, $J_{4,5b}$ 3.7, $J_{5a,5b}$ 12.0 Hz; ¹³C NMR: δ 31.54 (C-3), 65.76 (C-5), 78.30 (C-2), 78.62 (C-4), 94.31 (C-1), 128.3-129.6, 133.09, and 133.45 (Ph-C), 165.36 and 166.18 (2 CO); CIMS (NH₃): m/z 385 ([M + $[NH_4]^+$, 3%), 340 ($[MH - N_2]^+$, 15), 325 $([M - N_3]^+, 53), 105$ ([PhCO]⁺, 100). Anal. Calcd for $C_{19}H_{17}N_3O_5$ (367.36): C, 62.12; H, 4.66; N, 11.44. Found: C, 61.90; H, 4.49; N, 11.33.

The residue, obtained after concentration of the mother liquor, was resolved by chromatography (CH₂Cl₂, H₂O content $\leq 0.01\%$) to give an additional amount of **15** β [1.88 g,

9%; R_f 0.39 (CH₂Cl₂); mp 59–60.5 °C (from MeOH)] and the α -azide 15 α as a colourless oil: 1.52 g (7%); R_f 0.30; IR (film): v 2114 (N₃), 1724 (C=O), 1268 (benzoate C-O), 1116, and 711 cm⁻¹ (benzoate); ¹H NMR: δ 2.37–2.42 $(m, 2 H, H-3\alpha, 3\beta), 4.38 (dd, 1 H, H-5a), 4.52$ (dd, 1 H, H-5b), 4.77 (m, 1 H, H-4), 5.45 (dt, 1 H, H-2), 5.74 (d, 1 H, H-1), 7.42-7.49, 7.55-7.62 and 8.06-8.10 (3 m, 10 H, Ar-H), $J_{1,2}$ 4.5, $J_{2,3\alpha}$ and $J_{2,3\beta}$ 7.6, $J_{4,5a}$ 4.9, $J_{4,5b}$ 3.4, $J_{5a,5b}$ 12.0 Hz; ¹³C NMR: δ 30.78 (C-3), 65.80 (C-5), 73.42 (C-2), 75.39 (C-4), 90.94 (C-1), 128.4–129.8, 133.20, and 133.45 (Ph–C), 165.72 and 166.18 (2 CO); CIMS (NH₃): m/z $385 ([M + NH_4]^+, 2\%), 340 ([MH - N_2]^+, 40),$ 325 ($[M - N_3]^+$, 100), 105 ($[PhCO]^+$, 70). Anal. Calcd for C₁₉H₁₇N₃O₅ (367.36): C, 62.12; H, 4.66; N, 11.44. Found: C, 61.98; H, 4.78; N. 11.47.

2,3,4,6-Tetra-O-acetyl- β -D-galactopyranosyl azide (17).—Azidation of 16 (1.95 g, 5 mmol) afforded the crude product (1.67 g, 90%), which was crystallized from MeOH to give 17 (1.31 g, 70%) as colourless cubes: mp 96.5 °C, lit. mp 96 °C [33]; IR (KBr): v 2165 and 2127 (N₃), 1743 (C=O), 1379 (acetate CH_3), 1236 (acetate C–O), and 1216 cm⁻¹; ¹H NMR: δ 1.99, 2.07, 2.10, and 2.18 (4 s, each 3 H, 4 OCOCH₃), 4.03 (ddd, 1 H, H-5), 4.12-4.23 (2 m, 2 H, H-6a,6b), 4.61 (d, 1 H, H-1), 5.04 (dd, 1 H, H-3), 5.17 (dd, 1 H, H-2), 5.43 (dd, 1 H, H-4), $J_{1,2}$ 8.6, $J_{2,3}$ 10.4, $J_{3,4}$ 3.3, $J_{4,5}$ 1.1, $J_{5,6a}$ 6, $J_{5,6b}$ 7 Hz; ¹³C NMR: δ 20.45 and 20.55 (2 COCH₃), 20.59 (2 COCH₃), 61.16 (C-6), 66.77 (C-4), 67.96 (C-2), 70.64 (C-3), 72.76 (C-5), 88.19 (C-1), 169.30, 169.93, 170.06, and 170.32 (4 CO); EIMS: m/z 331 $([M - N_3]^+, 28\%), 115 (100); FABMS: 374$ $(MH^+, 1.2), 346 ([MH - N_2]^+, 3.7), 331$ $([M - N_3]^+, 100).$

Acknowledgements

This investigation was supported by the Ministry of Science and Technology of Slovenia (Grant Nos. 33-030 and CI-01513) and the EU (BIOMED1, Agreement No. ERB-CIPDCT 930194, PL 93-1112). We thank Dr Bogdan Kralj at the Mass Spectrometry Cen tre at the Jožef Stefan Institute (Ljubljana) and Dr Janez Plavec at the Slovenian National NMR Centre.

References

- Z. Györgydeák, L. Szilágyi, H. Paulsen, J. Carbohydr. Chem., 12 (1993) 139–163.
- [2] A. Štimac, I. Leban, J. Kobe, Synlett, (1999) 1069–1073.
- [3] H. Paulsen, Z. Györgydeák, M. Friedmann, Chem. Ber., 107 (1974) 1568–1578.
- [4] K. Matsubara, T. Mukaiyama, Chem. Lett., (1994) 247– 250.
- [5] (a) J. Hiebl, E. Zbiral, *Liebigs Ann. Chem.*, (1988) 765– 774. (b) F. Hammerschmidt, J.-P. Polsterer, E. Zbiral, *Synthesis*, (1995) 415–418.
- [6] A. Štimac, J. Kobe, Carbohydr. Res., 232 (1992) 359– 365.
- [7] (a) W. Schörkhuber, E. Zbiral, *Liebigs Ann. Chem.*, (1980) 1455–1469. (b) F.J. Schendel, J. Stubbe, *Biochemistry*, 25 (1986) 2256–2264.
- [8] H. Vorbrüggen, G. Höfle, Chem. Ber., 114 (1981) 1256– 1268.
- [9] R.U. Lemieux, Adv. Carbohydr. Chem., 9 (1954) 1-57.
- [10] K.A. Watanabe, D.H. Hollenberg, J.J. Fox, J. Carbohydr., Nucleosides, Nucleotides, 1 (1974) 1–37.
- [11] (a) C. Chavis, F. Grodenic, J.-L. Imbach, *Eur. J. Med. Chem. Chim. Ther.*, 16 (1981) 219–227. (b) T. Itoh, H. Takamura, K. Watanabe, Y. Araki, Y. Ishido, *Carbohydr. Res.*, 156 (1986) 241–246.
- [12] (a) R.K. Ness, H.G. Fletcher Jr., J. Am. Chem. Soc., 78 (1956) 4710-4714. (b) J.D. Stevens, H.G. Fletcher Jr., J. Org. Chem., 33 (1968) 1799-1805. (c) C. Chavis, F. Dumont, J.-L. Imbach, J. Carbohydr., Nucleosides, Nucleotides, 5 (1978) 133-147. (d) H.G. Howell, P.R. Brodfuehrer, S.P. Brundidge, D.A. Benigni, C. Sapino Jr., J. Org. Chem., 53 (1988) 85-88.
- [13] M. Popsavin, V. Popsavin, N. Vukojevic, D. Miljkovic, Collect. Czech. Chem. Commun., 59 (1994) 1884–1888.
- [14] R.L. Shone, Tetrahedron Lett., (1977) 993-996.
- [15] (a) H. Paulsen, Adv. Carbohydr. Chem. Biochem., 26 (1971) 127–195. (b) C.U. Pittman Jr., S.P. McManus, J.W. Larsen, Chem. Rev., 72 (1972) 357–438. (c) H.

Perst, in G. Olah, P. von R. Schleyer (Eds.), Carbonium Ions, Vol. 5, Wiley-Interscience, New York, 1976, pp. 1961–2047.

- [16] S. Hünig, Angew. Chem., Int. Ed. Engl., 3 (1964) 548– 560.
- [17] P.R. Brodfuehrer, C. Sapino Jr., H.G. Howell, J. Org. Chem., 50 (1985) 2597–2598.
- [18] (a) T.L. Cupps, D.S. Wise, L.B. Townsend, J. Org. Chem., 47 (1982) 5115–5120. (b) A.P. Kozikowski, K.L. Sorgi, B.C. Wang, Z. Xu, Tetrahedron Lett., 24 (1983) 1563–1566.
- [19] F. Becsi, E. Zbiral, Monatsh. Chem., 110 (1979) 955-978.
- [20] W. Hartmann, H.-G. Heine, *Tetrahedron Lett.*, (1979) 513–516.
- [21] P.T. Jørgensen, E.B. Pedersen, C. Nielsen, Synthesis, (1992) 1299–1306.
- [22] N. Wiberg, K.H. Schmid, Chem. Ber., 100 (1967) 748-754.
- [23] S. Saito, S. Yamashita, T. Nishikawa, Y. Yokoyama, M. Inaba, T. Moriwake, *Tetrahedron Lett.*, 30 (1989) 4153– 4156.
- [24] E.F. Recondo, H. Rinderknecht, Helv. Chim. Acta, 42 (1959) 1171–1173.
- [25] H.G. Fletcher Jr., H.W. Diehl, Carbohydr. Res., 4 (1967) 438–440.
- [26] A. Holy, Collect. Czech. Chem. Commun., 42 (1977) 902–908.
- [27] (a) C.D. Anderson, L. Goodman, B.R. Baker, J. Am. Chem. Soc., 80 (1958) 5247–5252. (b) W.W. Lee, G.L. Tong, in W.W. Zorbach, R.S. Tipson (Eds.), Synthetic Procedures in Nucleic Acid Chemistry, Vol. 1, Wiley–Interscience, New York, 1968, pp. 224–227.
- [28] G. Biagi, I. Giorgi, O. Livi, V. Scartoni, Farmaco, 47 (1992) 525–536.
- [29] S. Hanessian, J. Banoub, *Carbohydr. Res.*, 59 (1977) 261–267.
- [30] (a) P.J. Bolon, T.B. Sells, Z.M. Nuesca, D.F. Purdy, V. Nair, *Tetrahedron*, 50 (1994) 7747–7764. (b) A. Kumar, S.I. Khan, A. Manglani, Z.K. Khan, S.B. Katti, *Nucleosides*, *Nucleotides*, 13 (1994) 1049–1058.
- [31] M.J. Robins, M. MacCoss, S.R. Naik, G. Ramani, in L.B. Townsend, R.S. Tipson (Eds.), *Nucleic Acid Chemistry*, Part 3, Wiley, New York, 1986, pp. 58–60.
- [32] Y. Ishido, N. Sakairi, M. Sekiya, N. Nakazaki, *Carbohydr. Res.*, 97 (1981) 51–79.
- [33] A. Bertho, J. Maier, *Liebigs Ann. Chem.*, 498 (1932) 50–61.