Tetrahedron Letters 54 (2013) 6959-6963

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Condensation of Vilsmeier salts, derived from tetraalkylureas, with amidoximes: a novel approach to access N,N-dialkyl-1,2, 4-oxadiazol-5-amines

Dongshan Su^a, Haifeng Duan^a, Zhonglin Wei^a, Jungang Cao^a, Dapeng Liang^b, Yingjie Lin^{a,*}

^a Department of Chemistry, Jilin University, Changchun 130012, PR China ^b Department of Environment and Resources, Jilin University, Changchun 130012, PR China

ARTICLE INFO

Article history: Received 13 August 2013 Revised 30 September 2013 Accepted 14 October 2013 Available online 19 October 2013

Keywords: Amidoxime Oxadiazole Vilsmeier salts

ABSTRACT

A novel approach, condensation of Vilsmeier salts and amidoximes, to access N,N-dialkyl-1,2,4-oxadiazol-5-amines has been developed. By this approach, a broad range of N,N-dialkyl-1,2,4-oxadiazol-5-amines, including aromatic, heteroaromatic, and aliphatic substituents, can be synthesized in good to high yields (up to 82%) under mild reaction conditions.

© 2013 Elsevier Ltd. All rights reserved.

Oxadiazoles and their derivatives have been widely applied into natural products and drug intermediates such as antirhinovirus agents and anticonvulsants and analgesic agents.¹ Because of the biologic activities they exhibit, this kind of heterocyclic compounds have continuous interests in organic synthesis. Especially, N,N-dialkyl-1,2,4-oxadiazol-5-amines, not only has been reported as a pharmacologically active compound², but also can be used as ligands of PdCl₂ and other metal salts³ with useful properties.³

A variety of synthetic methods for the preparation of 1,2,4-oxadiazoles have been reported⁴; these methods for the construction of 1,2,4-oxadiazole skeleton are mainly based on the coupling reaction of amidoximes with activated carbonyl compounds under harsh conditions.⁵ However, the synthetic investigation of 5-dialkylamino substituted-1,2,4-oxadiazoles is limited.^{4f,6} To the best of our knowledge, the introduction of an N,N-dialkylamino substitutent at the 5 position of a 1,2,4-oxadiazole core is usually carried out through the nucleophilic displacement of 5-chloro- or 5-trichloromethyl-1,2,4-oxadiazole by a secondary amine.^{6g} A straightforward formation of 5-dialkylamino substituted-1,2,4oxadiazoles can be realized by the condensation of N-hydroxylguanidines and carboxylic acids.^{6h} In addition, 5-dialkylamino substituted-1,2,4-oxadiazoles, as by-products, have also been obtained in the reaction of S-methylated acylthioureas with hydroxylamine.⁷ As our continuous efforts on constructing heterocyclic compounds Table 1

Screening studies of the reaction^a of **1a** and **2a** with various conditions

		<u></u>	CI		\checkmark		
1a		1a	2a		3a		
	Entry	Mole ratio of 1a:2a	Solvent	Temp (°C)	Time (h)	Yield ^b (%)	
	1	1:2	CH₃CN	rt	4	59	
	2	1:2	THF	rt	4	43	
	3	1:2	Acetone	rt	4	78	
	4	1:2	DCM	rt	4	81	
	5	1:1	DCM	rt	4	46	
	6	1:1.5	DCM	rt	4	74	
	7	1:2	DCM	Reflux	4	80	
	8	1:2.5	DCM	rt	4	81	

 $\overset{\mathsf{N}^{\mathsf{OH}}}{\longrightarrow} \mathsf{NH}_{2} + \overset{\mathsf{CI}}{\xrightarrow{}} \overset{\mathsf{I}}{\xrightarrow{}} \overset{\mathsf{N}}{\xrightarrow{}} \mathsf{N}_{2} \overset{\mathsf{Et}_{3}\mathsf{N}}{\xrightarrow{}} \overset{\mathsf{N}^{\mathsf{O}}}{\xrightarrow{}} \overset{\mathsf{N}^{\mathsf{O}}}{\xrightarrow{}} \mathsf{N}_{2} \overset{\mathsf{N}}{\xrightarrow{}} \mathsf{N}_{2} \overset{\mathsf{N}^{\mathsf{O}}}{\xrightarrow{}} \mathsf{N}_{2} \overset{\mathsf{N}^{\mathsf{N}}}{\xrightarrow{}} \mathsf{N}_{2} \overset{\mathsf{N}^{\mathsf{N}}}{\xrightarrow{}} \mathsf{N}_{2} \overset{\mathsf{N}^{\mathsf{N}}}{\xrightarrow{}} \mathsf{N}_{2} \overset{\mathsf{N}^{\mathsf{N}}}{\xrightarrow{}} \mathsf{N}_{2} \overset{\mathsf{N}^{\mathsf{N}}}{\xrightarrow{}} \mathsf{N}_{2} \overset{\mathsf{N}^{\mathsf{N}}}{\xrightarrow{}} \mathsf{N}_{2} \overset{\mathsf{N}^{\mathsf{N}}}$

^a All the reactions were performed on the ratio 1:2 of 2a:Et₃N.

^b Isolated yields.

using Vilsmeier salts as building blocks,⁸ herein, we will disclose that condensation of Vilsmeier salts (derived from tetralkylureas) with amidoximes⁹ could provide a novel approach to access *N*,*N*dialkyl-1,2,4-oxadiazol-5-amines in good to high yields under mild reaction conditions.

Initially, we investigated the condensation of benamidoxime and N,N,N',N'-tetramethylchloroformamidinium chloride 2a for reaction optimization, including extensive screening of solvent,

etrahedro

^{*} Corresponding author. Tel./fax: +86 431 85168398. E-mail address: linyj@jlu.edu.cn (Y. Lin).

^{0040-4039/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.10.061

Table 2

Scope of synthesis of aromatic, heterocyclic, and aliphatic 5-amine-1,2,4-oxadiazoles^a

	1	2a 3	
Entry	Substrate (1a-1p)	Product (3a-3p)	Yield (%)
1	ta N N N N N N N N N N	Ba N-O N N	81
2	1b NH2		82
3			78
4			72
5			76
6			76
7		Br N N	73
8	Th NH2 I NH2 Br	$\begin{bmatrix} 3h & N & O \\ I & I & N \end{bmatrix}$	57
9			74
10			64
11			62
12			72
13			75
14			32

Table 2 (continued)

Entry	Substrate (1a-1p)	Product (3a-3p)	Yield (%)
15			40 ^b
16	1p OH N ↓ NH₂		56

^a All the reactions were performed on 2 mmol scale with 1:2 of 1:2a and 4 equiv base in 10 ml solvent in room temperature for 4 h.

^b The reactions were performed in solvent of acetone.

Table 3

Synthesis of 5-amine-1,2,4-oxadiazoles with the corresponding substrates of Vilsmeier salts

^a Expected product.

Scheme 1. Synthesis of 5-amine-1,2,4-oxadiazole via cyclic Vilsmeier salt and amidoxime.

Scheme 2. Mechanism for the formation of 3.

reaction temperature, and stoichiometry. The results are summarized in Table 1. As shown, the solvent exerts an important effect on the yield of product **3a**. When using 4 equiv of Et₃N as a base and 1:2 mol ratio of benamidoxime to 2a, the reaction was completed within 4 h at an ambient temperature in dichloromethane (DCM), furnishing product **3a** in 81% yield (Table 1, entry 4). In comparison, using acetonitrile, tetrahydrofuran, or acetone as a solvent, the reaction provided product 1c in lower yields (Table 1, entries 1–3). Decreasing the mole ratio of benamidoxime to 2a (from 1:2 to 1:1) led to a decrease in the yield of product **3a** (from 81% to 46%, Table 1, entries 4–6). However, increasing the mole ratio up to 1:2.5 has no apparent effect on the reaction outcome (Table 1, entry 8). While the reaction ratios of **1a:2a** from 1:1 to 1:2.5 afforded the product **3a** in 46–81%, the ratio 1:2 gave the best yield (Table 1, entry 4). Additional increasing of temperature led to no improvement in the yield (Table 1, entry 7). After the optimization study, in terms of the reaction yields the best reaction conditions were obtained as the following: 4 equiv of Et₃N as a base, 1:2 mol ratio of benamidoxime to 2a, DCM as a solvent, and at room temperature.

With optimized reaction conditions in hand, we turned our attention to the scope of the reaction with respect to the amidoximes. As shown in Table 2, a variety of amidoximes, derived from aromatic, and heteroaromatic and aliphatic nitriles⁴ⁱ, are competent in the reaction. Especially, aryl amidoximes bearing either electron-withdrawing or electron-donating substituents on the phenyl ring all exhibited high reactivity to give the corresponding products in good to high yields. Electron-deficient aryl amidoximes such as 4-fuloro-(Table 2, entry 4), 4-chloro-(Table 2, entry 5), 4-bromo-(Table 2, entry 6), and 4-nitro-(Table 2, entry 9) benzamidoxime were giving the corresponding products 3-substituted aromatic N,N-dimethy-1,2,4-oxadiazole-5amines in 72-76% yields. Similarly electron-rich aryl amidoximes, such as 4-methyl- and 4-methoxylbenzamidoxime provided the desired products in excellent yields (78%, 82%, Table 2, entries 2–3). Substitution at the para- or meta-position of the phenyl ring of aryl amidoximes did not interfere with their reactivity (Table 2, entries 6 and 7). It is noteworthy that ortho-position substituted aryl amidoximes, 2-bromo- and 2,6dichlorobenamidoxime, also gave the desired products in satisfied yields (57% and 64%, Table 2, entries 8 and 10). Gratifyingly, the reaction displayed high yields for heteroaromatic amidoximes 1k, 1l, and 1m (72%, 62%, and 75%, Table 2, entries 11-13). In addition, the fused-ring aryl amidoxime 1n could also apply into this reaction with yielding product **3n** in moderate yield (32%, Table 2, entry 13). However, in the case of aliphatic amidoximes, due to the poor solubility of 10 in DCM, acetone was used as the solvent instead of DCM. To our delight, products 30 and 3p were afforded in isolated yields of 40% and 56%, respectively (Table 2, entries 15, 16).

In order to explore the effect of structure of Vilsmeier salts on their reactivity and selectivity of corresponding products, we also examined a range of other symmetrical and unsymmetrical Vilsmeier salts in the reactions of them with benzamidoxime 1a under the identical conditions. Experimental results are summarized in Table 3. Of interest is the result shown in entry 1, the ring-opening of cyclic Vilsmeier salt 2b (2-chloro-1,3-dimethylimidazolium chloride or DMC) proceeded smoothly and gave 78% yield of product **3q** with a hexaalkylguanidinium cation. And an increase in the length of alkyl chains on dialkylamino groups, as we anticipated, apparently affected the reactivity of Vilsmeier salts 2, such as compound **2c**, ultimately leading to give 40% yield (Table 3, entry 2). A same trend was also observed when unsymmetrical Vilsmeier salts 2d and 2e reacted with benzamidoxime 1a; products 3q and 3r, isolated from their mixtures with product 3a, were obtained in 42% and 45% yields respectively; however, product 3a was only given in 12% and 14% yields respectively (Table 3, entries 3 and 4). For the substrate 2f, however, the reaction did not give the expected product under the experimental conditions.

In our previous studies^{8b}, we found that 2-chloro-1,3-dimethylimidazolium chloride (DMC) could convert α -amino alcohols to guanidines instead of oxazolines; And, in this work, we successfully tapped the leaving dialkylamino group on DMC using DMC itself in the reaction of DMC and benzamidoxime, and synthesized product **3q** containing a guanidinium cation (Scheme 1). Based on the above results, a possible mechanism, as shown in Scheme 2, for this transformation is proposed: initially, the nucleophilic substitution between amidoxime **g** and Vilsmeier salt **h** leads to guanidine intermediate **A**; subsequently, intermediate **A** undergoes an intramolecular nucleophilic substitution and forms product **3** in which process the dialkylamino group as a leaving group forms a guanidine with remained DMC.

In summary, a novel approach, condensation of Vilsmeier salts and amidoximes, to access *N*,*N*-dialkyl-1,2,4-oxadiazol-5-amines, has been developed. By this approach, a broad range of *N*,*N*-dialkyl-1,2,4-oxadiazol-5-amines, including aromatic, and heteroaromatic and aliphatic substituents, can be synthesized in good to high yields (up to 82%) under mild reaction conditions. Future efforts will be devoted to extending the substrate scope and exploring the application of this method in the synthesis of structurally related bioactive molecules.

Acknowledgments

We thank the Facility Center of the College of Chemistry in Jilin University for assistance with the NMR and HPLC-HRMS measurements.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013. 10.061. These data include MOL files and InChiKeys of the most important compounds described in this article.

References and notes

J. J. Org. Chem. 2003, 68, 7316-7321; (j) Buscemi, S.; Vivona, N.; Caronna, T. J. Org. Chem. 1996, 61, 8397-8401.

- 5. Kandre, S.; Bhagat, P. R.; Sharma, R.; Gupte, A. Tetrahedron Lett. 2013, 54, 3526-3529
- 1. (a) Diana, G. D.; Volkots, D. L.; Nitz, T. J.; Bailey, T. R.; Long, M. A.; Vescio, N.; Aldous, S.; Pevear, D. C.; Dutko, F. J. J. Med. Chem. 1994, 37, 2421-2436; (b) Miryan, N.I. U.S.S.R. Patent, 770050, **1985**.; (c) Akira, M; Kazuya, S; Hideki, T; Akira, M; Kazutoshi, H; Takuma, O. Eur. Pat. Appl. EP 446010 A1 19910911, 1991
- Grunwald, C.; Rundfeldt, C.; Lankau, H. J.; Arnold, T.; Hofgen, N.; Dost, R.; Egerland, U.; Hofmann, H. J.; Unverferth, K. J. Med. Chem. 2006, 49, 1855–1866.
 Bokach, N. A.; Kukushkin, V. Y.; Haukka, M.; Pombeiro, A. J. L. Eur. J. Inorg. Chem.
- 2005, 2005, 845-853.
- (a) Nishiwaki, N.; Kobiro, K.; Hirao, S.; Sawayama, J.; Saigo, K.; Ise, Y.; Okajima, Y.; Ariga, M. Org. Biomol. Chem. 2011, 9, 6750–6754; (b) Amarasinghe, K. K. D.; 4 Maier, M. B.; Srivastava, A.; Gray, J. L. *Tetrahedron Lett.* **2006**, *47*, 3629–3631; (c) Du, W.; Truong, Q.; Qi, H.; Guo, Y.; Chobanian, H. R.; Hagmann, W. K.; Hale, J. J. *Tetrahedron Lett.* **2007**, *48*, 2231–2235; (d) Kurz, T.; Lolak, N.; Geffken, D. Tetrahedron Lett. **2007**, 48, 2231–2235; (d) Kurz, I.; Lolak, N.; Gefriken, D. Tetrahedron Lett. **2007**, 48, 2733–2735; (e) Augustine, J. K.; Akabote, V.; Hegde, S. G.; Alagarsamy, P. J. Org. Chem. **2009**, 74, 5640–5643; (f) Ispikoudi, M.; Amvrazis, M.; Kontogiorgis, C.; Koumbis, A. E.; Litinas, K. E.; Hadjipavlou-Litina, D.; Fylaktakidou, K. C. Eur. J. Med. Chem. **2010**, 45, 5635–5645; (g) Makara, G. M.; Schell, P.; Hanson, K.; Moccia, D. Tetrahedron Lett. **2002**, 43, 5043–5045; (h) Nicolaidesa, D. N.; Litinasa, K. E.; Vrasidasa, I.; Fylaktakidoub, K. C. J. Heterocycl. Chem. 2004, 41, 499-503; (i) Hamze, A.; Hernandez, J. F.; Fulcrand, P.; Martinez,
- 6 (a) Ispikoudi, M.; Litinas, K. E.; Fylaktakidoua, K. C. Heterocycles 2008, 75, 1321-1328; (b) Kawashima, E.; Tabei, K. J. Heterocycl. Chem. 1986, 23, 1657–1660; (c) Dürüst, Y.; Yıldırım, M.; Aycan, A. J. Chem. Res. 2008, 235-239; (d) Adib, M.; Bagherzadeh, S.; Mahdavi, M.; Bijanzadeh, H. R. Mendeleev Commun. 2010, 20, 50-51; (e) Krasavin, M.; Rufanov, K. A.; Sosnov, A. V.; Karapetian, R.; Godovykh, E.; Soldatkina, O.; Lavrovsky, Y.; Gakh, A. A. Chem. Cent. J. 2010, 4, 4; (f) Eloy, F.; Lenaers, R. Helv. Chim. Acta 1966, 49, 1430-1432; (g) Matthew F. WO 2008/ 081204. 2008.
- 7. Chennakrishnareddy, G.; Debasis, H.; Jayan, R.; Manjunatha, S. G. Tetrahedron Lett. 2011, 52, 6170-6173.
- 8. (a) Wang, Y.; Xin, X.; Liang, Y.; Lin, Y.; Duan, H.; Dong, D. Adv. Synth. Catal. 2009, 351, 2217–2223; (b) Jia, X. D.; Duan, H. F.; Lin, Y. J.; Cao, J. G.; Liang, D. P.; Luo, X. Y.; Jiang, F.; Gao, H.; Wu, M. C. Chem. Res. Chinese U. 2010, 26, 394–397.
- 9 (a) Kantlehner, W.; Edelmann, K.; Gissel, A.; Scherr, O.; Vetter, J.; Wezstein, M.; Ziegler, G.; Mezger, J.; Iliev, B. Acta Chim. Slov. 2009, 56, 612-621; (b) Kawamorita, S.; Miyazaki, T.; Iwai, T.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2012, 134, 12924-12927; (c) Zare, H.; Ghanbari, M. M.; Jamali, M.; Aboodi, A. Chin. Chem. Lett. 2012, 23, 883-886.