Tetrahedron Letters, Vol.27, No.6, pp 765-768, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

REARRANGEMENT OF CYCLIC ALCOHOLS WITH AN ADJACENT PHENYLTHIO (PhS-) GROUP: MIGRATION OF A PhS GROUP AROUND A RING.

Malcolm Hannaby and Stuart Warren*

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW.

PhS migration around rings (size 5-15) gives allyl sulphides with a regioselectivity which varies with ring size.

We have recently shown¹ the effect of an adjacent phenylthio (PhS) group on the dehydration of a series of tertiary alcohols. We now report the rearrangement of an isomeric series of cyclic secondary alcohols (9), where PhS migration,² <u>e.g.</u> (1)-(3) is expected, illustrating the effect of ring sizes (n = 5-15) on sulphur participation. The β -hydroxy-sulphides (9) were prepared by sulphenylation of the corresponding cyclic ketone [either by (Method a) bromination of the ketone (4) and addition of sodium thiophenate or by (Method b) formation of the trimethyl silyl enol ether and addition of phenylsulphenyl chloride,³] and then methylation (KH, MeI).

Reduction (LiAlH₄, Et₂O, 0 ^OC) produces a pair of diastereoisomers (Table 1). Small rings show relatively high selectivity [(8), n = 5, 6, > 7:1]

whereas medium and large rings produce only moderate diastereomeric ratios |(8), n = 7, 8, 15, < 2:1|. Such selectivities have been explained in terms of an electronic interaction between the σ^* orbital of the incipient bond and the adjacent high energy C-S σ bond.³ In open chain molecules and presumably in very large rings, this is the same as Felkin's model,⁵ with the medium-sized group [the ring for (11)] adjacent to the carbonyl group giving the trans-isomer as the major product of reduction. Small rings controlled by the same electronic interaction can adopt a similar conformation accommodating the shorter linking chain (10) and so giving the <u>cis</u>-isomer as the major product. Orbital alignment improves as ring size decreases: this change is reflected in an increased selectivity during reduction (12, 13). Force-field calculations⁶ show that medium rings have a similar low energy conformation, however the <u>anti</u> face of the ketone is sterically hindered by the far side of the ring, so reaction must occur in some other less stereoselective conformation.

Rearrangement of the mixed <u>cis</u>- and <u>trans</u>-isomers of the β -PhS alcohols [(9, n=5-8), (10)] in refluxing benzene with catalytic amount of toluene-<u>p</u>-sulphonic acid (TsOH) gave recovered <u>cis</u>-alcohols (9) and allyl sulphides (15) and (16) by PhS shift from <u>trans</u>-alcohols (9). The <u>exo</u>-methylene compounds (16) were allowed to rearrange in daylight⁷ to the more stable isomers (17) and the rearrangement products were isolated as mixtures of endocyclic allyl sulphides (Table 2). Both <u>cis</u> and <u>trans</u> 15-membered ring alcohols [(9), n=15] rearranged by PhS migration. Both 12-membered ring alcohols [(9), n=12] rearranged, but the <u>cis</u>-alcohol rearranged more slowly than the <u>trans</u>.

Table 1: Stereoselectivity of Reduction of α -PhS Cyclic Ketones (8)

Starting	Materia⊥	Method	Yie⊥d	Yield	Yield	cis:trans	
	n	(a or b)	(7) (%)	(8) (%)	(9)(%)	(9)	
(4a)	5	a	32	70	100	20:1	
(4b)	6	a	69	80	82	7:1	
(4c)	7	а	35	47	100	3:1	
(4d)	8	b	60	68	95	1.5:1	
(4e)	10	b	50	60	95	2:1	
(4f)	12	b	80	60	100	4:1	
(4g)	15	b	64	94	90	2:1	

Loss of H^A from the intermediate episulphonium ion (14) gives an endocyclic double bond (15), whereas loss of H^B gives the exocyclic allyl sulphide (16). Elimination of H^C does not occur presumably because the tertiary centre C^a is better able to stabilize a developing positive charge. Indeed forcefield calculations show C^a-S to be longer than C^β-S (bond length C^a-S 1.898 A, C^β-S 1.806 A) supporting this suggestion.

The ratio of endocyclic to exocyclic elimination varied with ring size. Small ring <u>trans</u>-alcohols eliminated almost exclusively <u>endo</u>- and examination of the episulphonium ion [(14) n = 5,6] shows H^A is ideally orientated to eliminate. Larger ring <u>trans</u>-alcohols (n = 7-12) gave progressively more <u>exo</u> product (17). Loss of H^A would require either a very long chain (18) or an unfavourable transannular interaction (19). <u>Cis</u>-(9f) slowly rearranged to a mixture of <u>exo</u> and <u>endo</u> products: conformation (20) allowing loss of H^A . Both <u>cis</u> and <u>trans</u>-(9g) rearranged to (15, n = 15) <u>via</u> (18) and (20), now easily attained with such a long chain.

Table 2: Rearrangement of β -PhS Alcohols (9)

Starting	Material	Yield	Product Ratios ^a (%)				endo:
	n	(%)	<u>cis</u> -(9)	(15)	(16)	(17)	exo
(9a)	5	83	95	4.5	0	0.5	9:1
(9b)	6	99	88	10	0	2	5:1
(9c)	7	76	51	39	0	10	4:1
(9d)	8	100 ^b	60	0	40	0	0:1
(9d)	8	96	61	0	0	39	0:1
(9e)	10	99	49	25	0	26	1:1
(9f)	12	99	70	4	0	26	0.2:1
(9£) ^C	12	98	0	57	0	43	1.3:1
(9q)	15	99	0	92	8	0	11.5:1

- a) Alcohol refluxed in benzene with cat. TsOH for 15 mins.
- b) Isolated without exposure to light.
- c) Reflux time 90 mins: cis-(9f) gives ca. 3:1 endo:exo.

One clear exception to this trend is the eight-membered ring [(9), n = 8] which rearranges to give exclusively the product of <u>exo</u>- elimination. Forcefield calculations on the intermediate episulphonium ion show that in the eight-membered ring a conformation favourable for <u>endo</u>- elimination in the transition state (dihedral angle H^{A} -C-C-S, 180^{O}) is energetically very unfavourable.

Silicon has been used in open chain compounds to control the regioselectivity of PhS rearrangement,⁸ and can be used to give the less favoured isomer. Alkylation of cycloheptanone with trimethylsilylmethyl iodide and formation of the thermodynamic silyl enol ether (22) allows access to the required β -hydroxy sulphide (24) which rearranges under normal conditions to give only the exocyclic allyl sulphide (25) (cf. Table 2).

We thank the S.E.R.C. for a grant (to M.H.) and Dr Philip Judson of F.B.C. for molecular mechanics calculations and much helpful discussion.

References

- 1. M. Hannaby and S. Warren, Tetrahedron Lett., 1985, 26, 3133.
- P. Brownbridge and S. Warren, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 1</u>, 1977, 1131, 2272.
- S. Murai, Y. Kuroki, K. Hasegawa, and S. Tsutsumi, <u>J. Chem. Soc.</u>, <u>Chem.</u> Commun., 1972, 946.
- 4. A.S. Cieplak, J. Am. Chem. Soc., 1981, 103, 4540.
- 5. M. Cherest, H. Felkin, and N. Prudent, Tetrahedron Lett., 1968, 2199.
- 6. N.L. Allinger, Adv. Phys. Org. Chem., 1976, 13, 1.
- 7. P. Brownbridge and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1976, 2125.
- I. Fleming, I. Paterson, and A. Pearce, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 1</u>, 1981, 256.

(Received in UK 9 December 1985)