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Asymmetric Total Synthesis of Epolactaene
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The first asymmetric total synthesis of epolactaene, a
neuritogenic compound, was accomplished in 16 steps and its
absolute stereochemistry was determined.

Epolactaene 1 is a microbial metabolite isolated by Kakeya
and Osada et al. from fungal strain, Penicillium sp. BM 1689-P,
collected in the sea bottom of Uchiura bay, Japan.! It is effective
to the neurite outgrowth of a human neuroblastoma cell line (SH-
SYSY cells). Structurally epolactaene has a labile (E,E, E)-triene
and a novel 3-alkenoyl-3,4-epoxy-2-pyrrolidinone moiety, the
absolute stereochemistry of which is not determined. The
scarcity of epolactaene from natural sources combined with its
interesting biological properties prompted us to synthesize
epolactaene enantioselectively.
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First, the construction of the (E,E,F)-triene part was started
from tetrahydropyran-1-ol 2. Wittig coupling of 2 with (ethoxy-
carbonylethylidene)triphenylphosphorane in toluene at 90 °C for
1 h afforded (E)-unsaturated ester 3 stereoselectively (E . Z =
>95:<5), the hydroxy group of which was protected by the
treatment with s-butyldimethylsilyl chloride (TBSCI) and
imidazole in CH7Cl; to give TBS ether 4 in 96% yield in two
steps. Conversion of 4 to methyl (E, E)-2,4-nonadienoate 7 was
accomplished stereoselectively by the following sequence: 1)
Reduction of the ester 4 to allylic alcohol 5 by diisobutyl-
aluminum hydride (DIBAL-H) in CH2Cl3 from -78 °C to 0 °C; 2)
oxidation of the allylic alcohol § to aldehyde 6 by Griffith-Ley
oxidation? with 4-methylmorpholine N-oxide and a catalytic
tetrapropylammonium perruthenate in the presence of Molecular
Sieves 4A in CH,Cl, for 1 h; 3) Hormmer-Emmons reaction of 6
with methyl dimethylphosphonoacetate and n-BuLi afforded 7 in
75% total yield in 3 steps. Aldol condensation of lithium enolate
generated from 7 and lithium diisopropylamide (LDA) in THF-
HMPA at -78 °C with acetaldehyde at -78 °C for 3 h gave syn-
and anti-aldols 8 in 78% yield in 1:1.6 ratio, which could be
separated by column chromatography but were used as a mixture
in the next step. The diene moiety of these aldol isomers has E,E
geometry. This high E F selectivity is attributed to the selective
kinetic deprotonation of Ha proton from the most stable
conformation which minimizes the repulsion of methyl and R
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groups as shown in Figure 1.

The mixture of the syn- and anti-aldols was converted to
methyl (3E,5E)-2-[(E)-ethylidene]-4-methyl-3,5-nonadienoate
derivative 9 as follows: The aldols 8 were transformed into their
mesylates (imethanesulfonyl chloride, triethylamine, and a catalyt-
ic amount of 4-(N,N-dimethylamino)pyridine (DMAP) in
CHCly). The elimination of methanesulfonic acid using diaza-
bicycloundecene (DBU) from the crude mesylates afforded the
(E)-ethylidene derivative 9 in 71% yield. The followings were
noteworthy in this transformation; 1) The (E)-ethylidene
derivative 9 was stereoselectively formed from the syn-aldol at rt
by the treatment with DBU, while a mixture of (Z)- and (F)-
isomers were obtained from the anti-aldol. 2) Isomerization of
the (Z)-isomer to the (E)-isomer 9 proceeded at 90 °C in the
presence of DBU.

Since the triene 9 was prepared stercoselectively, the
construction of 3-alkenoyl-3,4-epoxy-2-pyrrolidinone moiety
was examined from 9. Deprotection of the silyl ether by n-
BuyNF in THF at rt for 2 h, followed by the treatment with
SO3epyridine,3 triethylamine and DMSO in CH,Cl; from 0 °C to
rt for 2 h afforded aldehyde 11 in 98% yield from 9. The
Horner-Emmons reaction of 11 with 1.1 molar amounts of
newly designed ethyl 4-diethylphosphono-3-oxopentanethiolate
124 and 2.1 molar amount of n-BuLi in THF-HMPA at -78 °C
for 20 min then at O °C for 10 min provided (4E)-y,5-unsaturated-
B-keto thiocester 13 in 66% yield along with the Z-isomer (7%).
The thioester 13 was converted to amide 14 by the reaction with
NHj3 in the presence of silver trifluoroacetate’ in THF at -78 °C
for 20 min. The Knoevenagel condensation of the B-ketoamide
14 and (R)-2-(s-butyldimethylsiloxymethoxy)propanal 156 in the
presence of a catalytic amount of ethylenediammonium diacetate”
for 10 h at rt gave (Z)-olefin 168 and the (E)-isomer in 28%
(66% conversion yield) and 9% yield, respectively, with the
recovery of the B-ketoamide 14 (58%). Epoxidation of 16 was
accomplished with Ph3COOH and rn-BuLi at -78 °C for 3 h
without affecting other olefinic parts, affording an inseparable
diastereomer mixture (about 3:1) of epoxides 17 in 83% yield.
Deprotection of the TBS ether 17 was achieved by the treatment
with LiBF49 in CH3CN containing 2% H,O at 1t for 9 h to
provide a-epoxy amide 18!0 and its diastereomer 18p10 in 56%
and 15% yield, respectively. Oxidation of the major isomer 18«
by SOsepyridine, Et3N and DMSO in CHCly at 0 °C for 1 h
produced 18 to epolactaene in 78% yield.

Synthetic epolactaene 1 exhibited identical properties to
those reported for the natural substance!2 (IH NMR,13 13C
NMR, and mass spectroscopies). The comparison of the optical
rotation (synthetic epolactaene: []Dp25 +31.3 (¢=0.14, MeOH),
natural epolactaene: [0(]D26 +32 (c=0.1, MeOH)!) determined the
absolute stereochemistry as shown in 1.

Thus, epolactaene was synthesized in an enantioselective
manner and the absolute configuration could be determined by the
present synthesis.
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