J.C.S. Снем. Сомм., 1979

Infrared Study of Coadsorption of H₂S and CO₂ on γ-Alumina

By JEAN-CLAUDE LAVALLEY,* JOSETTE TRAVERT, THÉRÈSE CHEVREAU, JEAN LAMOTTE, and ODETTE SAUR (Groupe Catalyse et Spectrochimie, I.S.M.R.A., Université de Caen, 14032 Caen Cedex, France)

Summary Infrared results provide spectroscopic evidence that H_2S and CO_2 interact on γ -alumina giving rise to

thiocarbonate surface species leading to the formation of carbonyl sulphide.

 γ -ALUMINA is the most common catalyst in commercial use for the Claus reaction, equation (1). An i.r. study of

$$2 \operatorname{H}_{2}S + SO_{2} \rightarrow 3 S + 2 \operatorname{H}_{2}O \tag{1}$$

sulphur dioxide adsorption on γ -alumina has been reported recently.¹ I.r. spectra of hydrogen sulphide chemisorbed on Al₂O₃ have been studied by Dalla Lana *et al.*^{2,3} and by Slager and Amberg.⁴ In particular two strong bands were observed at 1341 and 1568 cm^{-1.3,4} Slager and Amberg assigned the former to the δ (SH₂) mode of hydrogen bonded species and the latter to a v(Al-O) vibration.⁴ Recently, we noted that both bands were due to CO₂ traces admixed with H₂S.⁵ As the wavenumbers are different from those given by CO₂ adsorbed on γ -Al₂O₃, we suspected that interaction between H₂S and CO₂ had taken place. We here report the results of i.r. studies of this surface interaction.

The γ -alumina used was from Degussa with a surface area of $90 \text{ m}^2 \text{ g}^{-1}$. The powder was pressed into the form of ca. 50 mg discs which were activated at 600 °C in a grease-free silica cell, and pretreated by heating in oxygen for 2 h followed by evacuation. The samples were then treated in 300 Torr of hydrogen for another 2 h followed by evacuation at the same temperature to a residual pressure of $< 10^{-5}$ Torr. This pretreatment removes adsorbed 'molecular' oxygen species which may transform H₂S into water.³ I.r. spectra were recorded at room temperature with a Perkin-Elmer 580 grating instrument. Complementary gravimetric measurements were carried out in a conventional McBain thermobalance with 0.4 g samples of catalyst pretreated in the same way as before, the activation temperature being 500 °C. The adsorption pressure was kept very low (0.3-1.5 Torr). The chemisorbed amount is defined as the quantity remaining on alumina at 95 °C after cryogenic evacuation. 'Pure' H2S or D2S samples, without any trace of CO_2 , were prepared from Al_2S_3 by hydrolysis with H_2O or $D_2O.^6$

The admission of 'pure' H_2S to alumina causes a decrease in the intensity of the background OH band at 3785 cm⁻¹ while bands at 2570 and 3680 cm⁻¹ appear. No bands are detected in the 1700—1200 cm⁻¹ range. Recently, Karge and Rasko,' studying H_2S adsorption on zeolites, showed that on aluminium-rich faujasites, H_2S molecules were adsorbed dissociatively. By analogy, we assign the 2570 and 3680 cm⁻¹ bands to SH⁻ and OH groups formed from H_2S dissociative adsorption on alumina. Gravimetric measurements show that 80 μ mol g⁻¹ of H_2S are chemisorbed on γ -Al₂O₃.

I.r. spectroscopic studies on the chemisorption of CO₂ on Al₂O₃ have already been carried out.^{8,9} We find principal absorption bands at 3620, 1655, 1450, and 1228 cm⁻¹ (Figure), due to various modes of vibration of HCO₃⁻ ions. According to Fink¹⁰ and Knözinger,⁹ these species are formed on Al-OH pair sites, called X-sites. Gravimetric measurements show that ca. 12 µmol g⁻¹ of CO₂ are strongly chemisorbed on γ -Al₂O₃ at 95 °C.

When H_2S is adsorbed on CO_2 -treated γ -alumina, the HCO_3^- bands are weakened, while a new pair of bands appears at 1570 and 1340 cm⁻¹ (Figure). Gravimetric measurements show that the number of H_2S molecules chemisorbed on γ -alumina is not sensitive to the preadsorption of CO_2 . Adsorption of a mixture of H_2S and CO_2 (10:1) gives rise only to the pair of bands at 1570 and

FIGURE. Spectra of CO₂ and H₂S on y-alumina: (A) base line spectrum of activated disc; (B) CO₂ on Al₂O₃ after room temperature pumping; (C) (B) following exposure to H₂S (90 μ mol g⁻¹); (D) coadsorption of H₂S and CO₂ (10:1) on alumina (100 μ mol g⁻¹).

1340 cm⁻¹ in the 1700—1200 cm⁻¹ range (Figure). Their wavenumber is not sensitive to substitution of D for H as the same bands occur on adsorbing a mixture of D_2S and CO_2 . We assign them to carboxylate groups (v_a and v_g respectively) of species arising from interaction of H₂S (or D_2S) and CO_2 on the surface.

Coadsorption of H_2S and CO_2 on alumina leads to the formation of carbonyl sulphide: a band due to COS in the gas-phase surrounding the disc appears at 2060 cm⁻¹. Thus, we studied the adsorption of COS on γ -alumina. This adsorption gives no detectable changes in the intensities of i.r. bands due to surface hydroxy groups. New bands appearing at 1985 cm⁻¹ (very weak) and 1945 cm⁻¹ (weak) are due to chemisorbed COS. After a longer time of contact, the pair of bands at 1570 and 1340 cm⁻¹ observed on coadsorption of H_2S and CO_2 on alumina becomes apparent. Bands due to HCO_3^- species also appear. These features are related to the formation of CO_2 from COS, which is confirmed by the chromatographic analysis of the gas-phase.

From the experimental data, we conclude that some H_2S molecules should be chemisorbed and activated at sites close to those leading to the formation of $HCO_{\overline{s}}$ species.

This situation is allowed on the X-sites which have been described as acid-base pair sites consisting of a co-ordinatively unsaturated Al³⁺ ion and a basic OH group.^{9,11} If we assume that hydrogen sulphide is held by co-ordination bonds on co-ordinatively unsaturated Al³⁺ ions, the surface interaction between H_2S and CO_2 on alumina may be visualized as in the Scheme.

The surface thiocarbonate species would be characterized by the pair of bands at 1570 and 1340 cm^{-1} . Their

(Received, 6th November 1978; Com. 1192.)

structure easily explains the formation of COS from H₂S and CO₂ on the surface. Similar species may be involved

in the formation of CO₂ from COS on alumina. Haag and

Miale¹² suggested almost similar surface thiocarbonate

species to explain the formation of CO₂ from COS on MgO.

- ¹ C. C. Chang, J. Catalysis, 1978, 53, 374.
 ² A. V. Deo, I. G. Dalla Lana, and H. W. Habgood, J. Catalysis, 1971, 21, 270.
 ³ C. L. Liu, T. T. Chuang, and I. G. Dalla Lana, J. Catalysis, 1972, 26, 474.
 ⁴ T. L. Slager and C. H. Amberg, Canad. J. Chem., 1972, 50, 3416.
 ⁵ J. C. Lavalley, J. Travert, D. Laroche, and O. Saur, Compt. rend., 1977, 285C, 385.
 ⁶ F. G. W. Clarke and D. Slew, Canad. J. Chem., 1970, 764.

- ⁶ E. C. W. Clarke and D. N. Glew, Canad. J. Chem., 1970, 48, 764.
 ⁷ H. G. Karge and J. Rasko, J. Colloid. Interface Sci., 1978, 64, 522.
 ⁸ Y. Amenomiya, Y. Morikawa, and G. Pleizier, J. Catalysis, 1977, 46, 431.
- * H. Knözinger, Adv. Catalysis, 1976, 25, 184 and references therein.
- ¹⁰ P. Fink, Rev. Chim. (Roumania), 1969, 14, 811.
 ¹¹ H. Knözinger, H. Krietenbrink, H. D. Müller, and W. Schulz, Proc. 6th Internat. Congr. Catalysis, London, 1976, vol. 1, Chemical Society, 1977, p. 183; H. Knözinger and P. Ratnasamy, Catalysis Rev. Sci. Eng., 1978, 17, 31.
 ¹³ W. O. Haag and J. N. Miale, Proc. 6th Internat. Congr. Catalysis, London, 1976, vol. 1, Chemical Society, 1977, p. 397.