Stereodivergent Synthesis of *cis* Epoxides Derived from Asymmetrized 2-Alkenyl-1,3-propanediols

Giuseppe Guanti,* Luca Banfi, Valeria Merlo, Enrica Narisano, and Sergio Thea

Istituto di Chimica Organica dell'Università & C. N. R., Centro di Studio per la Chimica dei Composti Cicloalifatici ed Aromatici, Corso Europa 26, I-16132 Genova (Italy)

(Received in UK 29 June 1993; accepted 30 July 1993)

Abstract: Cis epoxides of any desired absolute stereochemistry have been obtained in a high enantio- and diastereodivergent manner via diastereospecific epoxidation of asymmetrized (Z)-2-alkenyl-1,3-propanediols, in turn obtained through a chemoenzymatic route, and a protection-deprotection 'trick' on hydroxy groups.

Differently protected *bis*(hydroxymethyl)acetaldehyde (BHYMA*)¹ 1, recently prepared by us in high enantiomeric excess by a chemoenzymatic procedure, is a new C₄ polyfunctionalized chiral building block available in both enantiomeric forms by a simple protecting group exchange at the two hydroxymethyl branches (*enantiodivergency*).¹ With the purpose to show the high chemical and stereochemical versatility of this new chiral precursor, we have studied some nucleophilic additions and we have found that a suitable choice of both protecting groups on the two hydroxymethyls and of the reaction conditions allows to control the stereochemistry

of the addition of various C-nucleophiles and to obtain adducts (3, Scheme 1) in high diastereomeric and enantiomeric excess.² Moreover, thanks to the residual 'latent symmetry'^{2a} present in the right moiety of 3, we have shown that it is possible to transform one diastereoisomer into its epimer using the same protecting groups interchange 'trick' before mentioned, thus obtaining both diastereoisomeric adducts exploiting a single type of stereocontrol in the addition step (*diastereodivergency*).²

We have now turned our attention to 2-alkenyl

Scheme 1

derivatives of 1,3-propanediol (2), which are homoallylic diols having both hydroxy groups on the same side and at the same distance with respect to the double bond. These substrates can undergo nucleophilic, electrophilic and radical additions and we were particularly interested in defining the role played by the protections of the two similar appendages on the stereochemistry of these reactions, in view of the many important products achievable through these transformations.

Continuing our researches on new polyfunctionalized chiral building blocks in organic synthesis,¹ we report here our results on the preparation of some (*E*) and (*Z*) asymmetrized 2-alkenyl-1,3-propanediols (4a - p)³ by a chemoenzymatic procedure and on their transformation into the corresponding epoxides⁴ which are useful intermediates for the construction of many important chiral targets.⁵

The epoxidation was studied on monoprotected derivatives since the ability of a homoallylic hydroxy group to affect the rate and the stereochemistry of this reaction is well known.⁵

i) H₂, Lindlar Pd, EtOH, r. t.. ii) O₃, CH₂Cl₂ / MeOH, -78°C, then Me₂S, pyridine, r. t.. iii) Ph₃P=CHR¹, THF, -78°C. iv) NaBH₄, MeOH, -78°C \rightarrow r.t. v) DMSO, *i*-Pr₂NEt, -78°C \rightarrow -30°C.

Comp	R ¹	R ²	R ³	R ⁴	Route	Comp	R1	R ²	R ³	R ⁴	Route
4a	н	Pr	Ac	Н	a	41	Pr	н	Tr	н	ba
4b	Н	Pr	Bn	Н	a	4m	Pr	Н	PMBOM	Η	⊆ª
4c	Н	Pr	TBDMS	Н	<u>a</u> a	4n	Pr	Н	TIPS	Н	ç
4d	-(CH	I2)5-	Ac	Н	a	40	Me	Н	PMBOM	Н	<u>c</u> a
4e	-(CH	I2)5-	TBDMS	Н	<u>a</u> a	4p	Me	Н	TIPS	Н	<u>c</u>
4f	Pr	Н	Ac	Н	<u>b</u>	4q	Н	Pr ⁱ	Ac	Н	<u>a</u>
4g	Pr	Н	Bn	Н	b	4r	Н	Pri	TIPS	PMBOM	<u>a</u>
4h	Pr	н	TBDMS	н	<u>b</u> a	4 s	Pr	н	TIPS	PMBOM	c
4i	Pr	Η	TBDPS	Н	<u>b</u> ^a	4t	Me	Н	TIPS	PMBOM	<u>c</u>

Bn = PhCH2; TBDMS = t-BuMe2Si; PMBOM = 4-MeO(C6H4)CH2OCH2; Tr = Ph3C; TBDPS = t-BuPh2Si; TIPS = (Me2CH)3Si; Pr = Me(CH2)2; $Pr^{i} = Me_{2}CH$

^a The enantiomer was synthesised.

With the aim at defining the best protocol to obtain the alkenyl substrates in high enantiomeric and diastereoisomeric excess, we followed three different routes (Scheme 2): a) PPL catalyzed monohydrolysis of 2-alkenyl-1,3-propanediacetates¹ (for 4a - e); b) hydrogenation of asymmetrized 2-alkynyl-1,3-propanediacetates, in turn obtained by PPL catalyzed monohydrolysis of the corresponding diacetates¹ (for 4f - l); c) Wittig condensation of asymmetrized BHYMA* 6 with phosphorus ylides (for 4m - p). In each process, the eventual manipulation of protecting groups afforded the desired monoprotected diol.

Although the first procedure apparently was the most straightforward, unfortunately appreciable changes of enantiomeric excess with the structure of substrates were found to occur in PPL catalyzed hydrolysis¹ and, especially in the asymmetrization of (Z) 2-alkenyl-1,3-diacetoxypropane, the enantiomeric excess was generally rather poor (e. e. 55%). For (Z) substrates the procedure <u>b</u> appeared to be more convenient, since alkynyl substrates were in general better (e. e. \geq 83%) accepted by PPL than (Z) alkenyl ones and the subsequent hydrogenation of the triple bond generally proceeded in good chemical and stereochemical yields. Finally, a further

Table 1. E	poxidation of	monoprotected	homoallyli	c diols 4a -	p
------------	---------------	---------------	------------	---------------------	---

Entry	Subs	Conf	R3	Method [*]	Yield (%) ^D	anti : syn ratio ^{c, a}
1	4a	E	Ac	Α	84	54 : 46
2	4a	E	Ac	В	<i>5</i> 8	50:50
3	4b	E	Bn	Α	86	51 : 49
4	4 c	E	TBDMS	Α	77	57 : 43
5	4 c	E	TBDMS	В	96	68:32
6	4d	-	Ac	Α	50	85:15
7	4d	-	Ac	в	43	84 : 16
8	4e	-	TBDMS	Α	19	> 95 : 5
9	4e	-	TBDMS	В	66	> 95 : 5
10	4 f	Ζ	Ac	Α	82	64:36
11	4f	Ζ	Ac	В	38	72 : 28
12	4 g	Ζ	Bn	Α	71	80:20
13	4 g	Ζ	Bn	В	56	> 95 : 5
14	4h	Ζ	TBDMS	Α	79	70:30
15	4h	Ζ	TBDMS	В	63	> 95 : 5
16	4 i	Ζ	TBDPS	Α	72	85:15
17	4i	Ζ	TBDPS	В	57	> 95 : 5
18	41	Ζ	Tr	Α	95	79 : 21°
19	41	Ζ	Tr	В	90	> 95 : 5°
20	4m	Ζ	PMBOM	В	74	> 95 : 5
21	4n	Ζ	TIPS	В	61	> 95 : 5
22	4 o	Ζ	PMBOM	В	90	> 95 : 5
23	4p	Ζ	TIPS	в	98	> 95 : 5

^a Method A: MCPBA, anhydrous CH₂Cl₂; Method B: *t*-BuOOH, VO(acac)₂, anhydrous CH₂Cl₂. ^b Isolated (*anti* + *syn*) yields. ^c Determined by ¹H NMR spectroscopy. In some cases, diastereoisomeric ratio was confirmed by isolating (flash chromatography) and weighing single diastereoisomers. ^d For a definition of *anti* isomer, see Text. For the determination of stereochemistry and optical purity of products see Text and Experimental. ^e Determined by TLC spectrodensitometry (λ 254 nm).

improvement in the enantiomeric excess of the (Z) derivatives was achieved by strategy \underline{c} . This strategy star from 2-isopentenyl-1,3-diacetoxypropane, which seemed to be the best substrate accepted by PPL.¹ This di etate, once asymmetrized by the enzyme to 4q (e. e. > 95%), was transformed into a BHYMA* and then c densed with phosphorus ylides to furnish the required alkenyl derivative. The advantage of this route is that same PPL asymmetrized precursor (4q) could be used for the preparation of any olefinic derivative. The or problem was to ensure the enantiospecificity of all the steps that follow the enzyme catalyzed asymmetrizat and the diastereocontrol of the Wittig reaction. This aim was reached by a proper choice of the protect groups (TIPS and PMBOM, see 4r) for the asymmetrized alkenediol before performing the ozonolysis and purifying the corresponding aldehyde by fast column chromatography in the presence of traces of pyridine⁶ fore the Wittig condensation, which was performed using two unstabilized ylides.⁷ The optical purity of two (Z) alkenes (4s and 4t) was checked via ozonolysis, followed by NaBH₄ reduction of the resulting al hyde, and ¹H NMR analysis of Mosher's esters⁸ derived from the corresponding alcohol (7).

The monoprotected alkenes were finally obtained either from monoacetates 4a, d, f or from diprotec alkenes 4s and 4t through protection-deprotection procedures. The various protecting groups were selected the basis of the mildness of the conditions required for their introduction and removal and taking into acco their different electronic properties ('chelating' or 'non-chelating').¹ The overall sequences were found to be general non-racemizing, as judged from NMR analysis of Mosher's esters derived from monoprotected alke themselves. Only in the case of benzylation we found some difficulties, working both under basic or acid conditions. In the former case, chemical yield were good, but racemisation was observed (complete when b zylation was performed on monoacetates 4a or 4d, partial when performed on monoacetates or monosilylated diols 4c or 4 in the latter case, no trace of desired product was observed starting either from monoacetates or monosilyla diols.

Having in our hands good methodologies to obtain monoprotected (*E*) and (*Z*) 2-alkenyl-1,3-propane ols in an enantiospecific manner, we turned our attention to the epoxidation reaction, ^{10, 11} which was stud using two different sets of oxidative conditions: 3-chloroperoxybenzoic acid in anhydrous CH₂Cl₂ (Method and *t*-BuOOH and VO(acac)₂ in anhydrous CH₂Cl₂ (Method B). Chemical and stereochemical results for variously protected 2-alkenyl-1,3-propanediols are reported in Table 1: *anti* epoxides are herein defined as ones having the oxygen of the oxiranic ring and the alkoxymethyl substituent on the opposite side in the zigdrawing, as indicated in Scheme 3.

An examination of the data shows that, in accordance with previously reported literature data for epoxition of homoallylic alcohols having a chiral centre in the α position, 5b, 11a, b, f, i, l, 12 the *anti* epoxide is get ally obtained as the main diastereoisomer.

The more pronounced stereoselectivity obtained using t-BuOOH / VO(acac)₂ could be ascribed t

Scheme 4

i) PhCH2OCH2Cl, i-Pr2NEt, CH2Cl2. ii) LiAlH4, THF or Et2O / THF. iii) 2-Methoxypropene, PTSA, CH2Cl2.

 $R^1 = TIPS; R^2 = PMBOM$

i) *i*-Pr3SiCl, imidazole, DMF or *i*-Pr3SiOSO₂CF₃, 2,6-lutidine, CH₂Cl₂. ii) KOH, MeOH. iii) 4-MeOC₆H₄CH₂OCH₂Cl, *i*-Pr₂NEt, CH₂Cl₂. iv) O₃, MeOH-CH₂Cl₂, then Me₂S, pyridine. v) Ph₃P=CH(CH₂)₂Me, THF. vi) DDQ, CH₂Cl₂, *t*-BuOH, pH 7 buffer. vii) TBAF, THF. viii) *t*-BuOOH, VO(acac)₂, CH₂Cl₂. ix) PhCH₂OCH₂Cl, *i*-Pr₂NEt, CH₂Cl₂. x) H₂, 10% Pd/C, CaCO₃, MeOH.

stronger interaction between the hydroxy group in the substrate and the oxidising agent through formation of a cyclic vanadate ester in the transition state.^{11b} The higher selectivity observed with (Z) alkenes with either employed oxidising systems was also in accordance both with the coordinated transition state^{11a}, c, ¹³ (10) generally proposed for MCPBA oxidations of olefins and with the 'chair-like' cyclic transition state^{11b} (11) suggested for vanadium-catalyzed epoxidations. In the former case, the hydroxyalkyl group can occupy either the

anti or the inside position for E alkenes, but experiences severe steric interactions in the inside position for \hat{a} isomers (R¹ = Alkyl); in the latter case only E isomers (R¹ = H) can achieve an energetically competitive boa conformation, leading to syn product. High stereoselectivity in the epoxidation of (E) homoallylic alcohols has indeed previously been reported only when the olefinic double bond is trisubstituted. ^{11a, d} The usually high selectivity in vanadium-catalyzed epoxidations seems independent both of R¹ (e. g., entries 20 - 21 vs 22 - 23) and of R³ (e. g., entries 13 vs 15, 20 vs 21), provided that R³ is not very small: in our opinion, the generally low diastereoselectivity exhibited by homoallylic monoacetates 4a, d, f could be ascribed to the small encumbrance of the acetyl group rather than to its coordinating properties.^{11d}

Relative configurations of products were determined by converting some of the epoxides into cyclid derivatives, *i. e.* dioxolanes 12 - 15 (Scheme 4)¹⁴ and examining their NMR spectra: both proton and carbon-13 signals were in accord with proposed stereochemistry.^{4, 15} Chromatographic and spectroscopic analogies were used to correlate other epoxides. Retention of configurational integrity in the epoxy alcohols was confirmed by ¹H NMR analysis of Mosher's esters⁸ derived from some of the epoxy alcohols themselves.

We have thus shown how it is possible to obtain *anti* epoxides in an enantiospecific and diastereoselective manner, but it is well known that a major problem in the epoxidation of (Z) homoallylic alcohols is the stereose lective achievement of *syn* isomers and only recently some practical methods have been reported, using either removable C-trimethylsilyl group to mimic a trisubstituted double bond^{11d} or a very bulky non-coordinating hy droxyl protecting group and a tungsten-based oxidising agent to reverse the selectivity.^{11f}

In our case, thanks to the latent σ -symmetry in the propanediol moiety of our products, no particular chemical device was necessary to reverse the selectivity: in fact, the stereoselective achievement of the *anti* iso mer meant the stereoselective achievement of the *syn* one as well, simply applying a suitable protocol of protect ing groups exchange. A straightforward example of the high *enantio*- and *diastereodivergency* of our substrater is shown in Scheme 5, that exemplifies how to obtain, starting from a common chiral precursor (monoacetat 4q, easily obtained in a multigram scale through an enzyme catalyzed hydrolysis),¹ any of the four possible stereoisomeric *cis* diprotected epoxides (16 and 17, and their enantiomers). In fact, using a single diastereose lective Wittig reaction (to obtain 4s) and a single diastereoselective epoxidation on (Z) homoallylic alcohols 4 and *ent*-4m, the two stereoisomeric *cis* diprotected epoxide 16 and 17 (having the same configuration at carboo 2 but opposite configuration at carbon 3 and 4) were obtained through the same number of steps and in simila yields (left half of Scheme 5), simply varying the stage and / or the order of removal and introduction of protecting groups: exactly in the same way, their enantiomers were obtained from *ent*-4s (right half of Scheme 5).

Moreover, thanks again to the high latent symmetry of our substrates, it was also possible to obtain th two diastereoisomeric diprotected *cis* epoxides 16 and *ent*-17 (which are epimeric at carbon 2) through the epoxidation of a single homoallylic alcohol (*e. g.* 4m, that gives *anti* epoxide 8m), followed by a suitable protection-deprotection trick, thus "building a bridge" between the right and the left half of Scheme 5. The othe two diastereoisomers (*ent*-16 and 17) could be in turn obtained starting from *ent*-4m.

In this way, we have devised a practical route to obtain all four stereoisomeric diprotected *cis* epoxide: (16 and 17, and their enantiomers), starting from a single precursor (4q), simply through the same optimized diastereoselective reactions and a judicious choice and use of protecting groups.

We wish to thank M.U.R.S.T. and C.N.R. (Progetto Finalizzato Chimica Fine) for financial assistance.

EXPERIMENTAL

<u>General</u>

NMR spectra were recorded as CDCl₃ solutions on a Varian Gemini 200 spectrometer using tetramethylsilane (TMS) as internal standard; chemical shifts (δ) are in ppm, coupling constants (J) are in Hz; a * means that the value was obtained through double resonance experiments. ¹H NMR data for homoallylic alcohols 4 are reported in Table 2, data for epoxides 8 and 9 are reported in Table 4 (*anti* epoxides 8) e Table 5 (*syn* epoxides 9). Optical rotatory powers ([α]_D) were measured as 1 - 2% CHCl₃ solutions.

'Usual workup' means that the given reaction mixture was extracted (Et₂O, CH₂Cl₂, or AcOEt), the organic layer was dried (Na₂SO₄), filtered, and evaporated to dryness under reduced pressure.

Tetrahydrofuran (THF) was always freshly distilled from K / Ph₂CO; CH₂Cl₂, Et₂O, PhMe, N,N-dimethylformamide (DMF), and PhH were purchased as dry solvents from Aldrich and stored over 4 Å molecular sieves. All reactions requiring dry conditions were run under an inert atmosphere (N_2) .

TLC analyses were carried out on silica gel plates, which were developed by spraying a solution of $(NH_4)_4MoO_4.4H_2O$ (21 g) and Ce(SO₄)₂.4H₂O (1 g) in H₂SO₄ (31 ml) and H₂O (469 ml) and warming. R_f were measured after an elution of 7 - 9 cm. Column chromatographies were run following the method of 'flash chromatography', ¹⁶ using 230 - 400 mesh silica gel (Merck).

t-Butylhydroperoxide is abbreviated as TBHP, vanadyl acetylacetonate as $VO(acac)_2$, 3-chloroperoxybenzoic acid as MCPBA, *p*-toluenesulfonic acid as PTSA, and petroleum ether (b. p. 40 - 60°C) as PE.

All compounds gave satisfactory spectroscopic and analytical data: a selection of the latter data is reported in Table 6.

Synthesis of optically active (S) monoacetates 4a, d, and f through enzymatic hydrolysis of corresponding diacetates has been already reported in Ref. 1, as well as the synthesis of (S) alcohol 7 and its enantiomer.

<u>Synthesis of (S)-2-(acetoxymethyl)-3(Z)-hepten-1-ol (4f).</u> - Monoacetate 5 (1 mmol) was dissolved in 96% EtOH (25 ml) and hydrogenated at r.t. and normal pressure over Lindlar Pd for about 15 h. The reaction was followed by GC (RSL 150 capillary column; 120°C, then 3°C/min; $t_R = 17.06$ ' for 4f and 19.06' for 5). After filtration of the catalyst through a silica gel pad and evaporation of solvent under reduced pressure, pure monoacetate 4f was obtained as a colourless oil (80%): $R_f = 0.38$ (PE / AcOEt 7 : 3); ¹H NMR: see Ref. 1.

General procedure for the synthesis of (R)-2-(t-butyldimethylsilyloxymethyl)-3(E)-hepten-1-ol (ent-4c). 2-(t-butyldimethylsilyloxymethyl)-3-cyclohexylidene-1-propanol (ent-4e), and (R)-2-(t-butyldimethylsilyloxymethyl)-3(Z)-hepten-1-ol (ent-4h). - A solution of monoacetate 4a or 4d or 4f (1 mmol) in dry DMF (5 ml), was cooled to 0°C, and treated with t-BuMe₂SiCl (1.2 mmol) and imidazole (2.4 mmol). After 10 min the reaction was allowed to reach r.t. and stirred for 2.5 h. After cooling to 0°C, the solution was treated with H₂O (5 ml) and subjected to usual work-up (PE / Et₂O 1 : 1). Crude product was taken up in MeOH (1 ml), cooled to 0°C and treated with a 0.2 M solution of KOH in MeOH (0.7 ml; 1.4 mmol). The solution was stirred for 2 h at 0°C and for 1 h at r.t., then treated with saturated aqueous NH₄Cl (2 ml). Most methanol was evaporated at reduced pressure and the mixture diluted with H₂O and subjected to usual work-up (Et₂O) to give, after chromatography (PE / AcOEt), pure *ent*-4c (90%) or *ent*-4e (76%) or *ent*-4h (88%) as colourless oils: ¹H NMR data: see Table 2. *ent*-4c: R_f = 0.34 (PE / Et₂O 9 : 1); [α]_D = +19.6°. *ent*-4e: R_f = 0.37 (PE / Et₂O 8 : 2); [α]_D = +14.2°. *ent*-4h: R_f = 0.22 (PE / Et₂O 95 : 5); [α]_D = +25.1°.

<u>Synthesis of (R)-2-(t-butyldiphenylsilyloxymethyl)-3(Z)-hepten-1-ol (ent-4i)</u>. - It was prepared from 4f and t-BuPh₂SiCl in 70% yield following the same procedure used for ent-4c, ent-4e, and ent-4h: $R_f = 0.13$ (PE / Et₂O 95 : 5); [α]_D = +23.4°; ¹H NMR: see Table 2.

Table 2. ¹H NMR data for homoallylic alcohols 4.

	=CHCH	С <i>H2</i> ОН	CH2OR	=СНСН	Others
	(m, 1 H) ^a	(2H) ^a	(2 H) ^a	(1 H) ^a	
		L	L		
b	2.53-2.70	3.46-	3.78 ^b	5.28 ^c (1.3,	0.88 (t, 3 H, J 7.2, MeCH ₂); 1.37 (app. sextuplet, 2 H, J 7.4,
				7.6, 15.4)	MeCH ₂); 1.99 (app dq, 2 H, J 1.2 & 6.7, CH ₂ CH=); 4.53 (s, 2 H,
					CH2Ph); 5.59 (ddt, 1 H, J 1.4 & 6.0 & 15.7); 7.33 (br s, 5 H, Ph).
c	2.478	3.58-	3.79b	5.24 ^c (1.4,	0.07 (s, 6 H, 2 x MeSi); 0.88 (t, 3 H, J 7.3, MeCH ₂); 0.90 (s, 9 H,
	(7.7)			8.1, 15.5)	Me ₃ C); 1.38 (app sextuplet, 2 H, J 7.5, MeCH ₂); 1.98 (app dq, 2 H,
					J 1.2 & 6.6, CH ₂ CH=); 5.58 (ddt, 1 H, J 0.8 & 6.7 & 15.8,
					CH ₂ CH=); 7.35-7.69 (m, 10 H, 2 x Ph).
e	2.72-2.85	3.51-	3.76 ^b	4.77 ^h (9.2)	0.07 & 0.08 (2 s, 3 H each, 2 x MeSi); 0.90 (s, 9 H, Me ₃ C); 1.10-
		[1.99 (m, 6 H) & 2.06 (t, 2 H, J 5.1) & 2.17 (t, 2 H, J 5.0)
					(cyclohexane ring CH ₂).
8	2.90-3.08	3.44-	3.79 ^b	5.16 ^c (1.6,	0.90 (t, 3 H, J 7.3, MeCH ₂); 1.38 (app. sextuplet, 2 H, J 7.4,
				9.5, 10.3)	MeCH ₂); 2.07 (dq, 2 H, J 1.5 & 7.2, CH ₂ CH=); 4.53 (8, 2 H,
					CH2Ph); 5.56 (ddt, 1 H, J 1.0 & 10.9 & 7.4, CH2CH=); 7.34 (br s, 5
					H, Ph).
h	2.77-2.92	3.53-	3.79 ^b	5.13° (1.5,	0.08 (s, 6 H, 2 x MeSi); 0.90 (s, 9 H, Me3C); 0.91 (t, 3 H, J 7.3
	[10.0, 10.6)	MeCH ₂); 1.38 (app sextuplet, 2 H, J 7.5, MeCH ₂); 2.07 (dq, 2 H, J
					1.5 & 7.3, CH ₂ CH=); 5.55 (dt, 1 H, J 7.4 & 11.0, CH ₂ CH=).
i	2.85-2.90	3.60-	3.83 ^b	5.11 ^d	0.85 (t, 3 H, J 7.2, MeCH ₂); 1.06 (s, 9 H, Me ₃ C); 1.21-1.33 (m, 2
				(10.9)	H, MeCH ₂); 1.94 (app q, 2 H, J 7.3, CH ₂ CH=); 5.51 (dt, 1 H, J 7.3
					& 10.6, CH ₂ CH=); 7.39-7.70 (m, 10 H, 2 x Ph).
1	2.80-2.98	3.55 &	3.10 &	5.14 ^c (1.5,	0.88 (t, 3 H, J 7.1, MeCH ₂); 1.20-1.41 (m, 2 H, MeCH ₂); 2.01 (app
		3.71 ^e (6.0,	3.21 ^e (4.7,	9.5, 10.2)	dq, 2 H, J 1.6 & 7.5, CH ₂ CH=); 5.54 (dt, 1 H, J 8.3 & 10.1, $J^*3,4$
		7.1, 10.8)	8.0, 9.0)		10.9, CH ₂ CH=); 7.22-7.46 (m, 15 H, 3 x Ph).
m	2.85-3.05	3.54-	3.76 ^b	5.20 ^c (1.4,	0.92 (t, 3 H, J 7.2, MeCH ₂); 1.40 (app sextuplet, 2 H, J 7.1,
				9.7, 11.1)	$MeCH_2$); 2.08 (app dq, 2 H, J 1.6 & 7.6, $CH_2CH=$); 3.81 (s, 3 H,
					MeO); 4.54 (s, 2 H, CH ₂ Ar); 4.73 (s, 2 H, OCH ₂ O); 5.60 (ddt, 1 H,
					J 0.8 & 7.3 & 11.0, CH ₂ CH=); 6.86-7.30 (m, 4 H, ArH).
n	2.80-2.98	3.58-	3.86 ^b	5.12 ^c (1.5,	0.91 (t, 3 H, J 7.3, MeCH ₂); 0.98-1.15 (m, 21 H, 3 x Me ₂ CH); 1.39
				9.6, 11.0)	(app sextuplet, 2 H, J 7.3, MeCH ₂); 2.07 (app dq, 2 H, J 1.4 & 7.4,
<u> </u>					CH2CH=); 5.55 (ddt, 1 H, J 0.9 & 7.4 & 10.9, CH2CH=).
0	2.89-3.06	3.50-	3.80 ^b	5.23 ^f (1.8,	1.69 (dd, 3 H, J 1.8 & 6.9, MeCH); 3.81 (s, 3 H, MeO); 4.54 (s, 2 H,
		1		9.4, 10.9)	CH_2Ar); 4.74 (s, 2 H, OC H_2O); 5.68 (ddq, 1 H, J 1.1 & 6.9 & 10.9,
					MeCH=); 6.85-6.91 (m, 2 H, ArH); 7.25-7.34 (m, 2 H, ArH).
р	2.82-3.02	3.56-	3.90 ^b	5.14 ^f (1.7,	1.00-1.15 (m, 21 H, 3 x Me_2CH); 1.69 (dd, 3 H, J 1.8 & 6.9,
	1	1		9.6. 10.7)	MeCH); 5.63 (ddg, 1 H, J 1.0 & 6.9 & 10.7, MeCH=).

^a Coupling constants J (Hz) are reported in parentheses. ^b Multiplet, 4 H. ^c Doublet of doublet of triplet. ^d Apparent triplet. ^e AB Part of an ABX system. ^f Doublet of doublet of quadruplet. ^g Apparent sextuplet. ^h Broad doublet.

<u>Synthesis of 2-(benzyloxymethyl)-3(E)-hepten-1-ol (rac-4b).</u> - A solution of 4a (1 mmol) in dry DMF (1.5 ml) was cooled to 0°C and treated with PhCH₂Br (1.5 mmol) and with NaH (50% in mineral oil; 1.5 mmol). After stirring for 1 h at r.t., saturated aqueous NH₄Cl (15 ml) was added. After usual work-up and chromatographic purification, pure 4b (85%) was obtained as a colourless oil in almost racemic form: $R_f = 0.28$ (PE / Et₂O 7 : 3); ¹H NMR: see Table 2.

<u>Synthesis of (S)-2-(benzyloxymethyl)-3(Z)-hepten-1-ol (4g).</u> - A solution of ent-4h (1 mmol) in dry DMF (1.5 ml) was cooled to 0°C and treated with PhCH₂Br (1.5 mmol) and with NaH (50% in mineral oil; 1.5 mmol).

After stirring for 2 h at 0°C and 1 h at r.t., saturated aqueous NH₄Cl (15 ml) was added. After usual work-up, crude product was dissolved in dry THF (7.5 ml), treated with a 1 M solution of TBAF in THF (1.3 ml; 1.3 mmol) and, after stirring for 40° at r.t., reaction mixture was diluted with brine (15 ml) and water (15 ml) and subjected to usual work-up (Et₂O) to give after chromatography (PE / Et₂O), pure 4g (85%) as a colourless oil: $R_f = 0.33$ (PE / AcOEt 8 : 2); [α]_D = -25.9° (e. e. \approx 56%); ¹H NMR: see Table 2.

Synthesis of (R)-2-(triphenylmethyloxymethyl)-3(Z)-hepten-1-ol (ent-4l). - A solution of monoacetate 4f (1 mmol) in dry CH₂Cl₂ (3.5 ml) was cooled to 0°C and treated with Et₃N (2.5 mmol), Ph₃CCl (2 mmol) and a catalytic amount of DMAP. After stirring at r.t., water (4 ml) was added. Reaction mixture was diluted with brine (15 ml) and subjected to usual work-up (Et₂O). Crude product was taken up in MeOH (1 ml), cooled to 0°C, and treated with a 0.2 M solution of KOH in MeOH (0.7 ml; 1.4 mmol). The solution was stirred for 4 h at r.t., then treated with saturated aqueous NH₄Cl (4 ml). Most methanol was evaporated at reduced pressure and the mixture diluted with brine and subjected to usual work-up (Et₂O) to give, after chromatography (PE / Et₂O, containing 0.5% of Et₃N), pure ent-4l (87%) as colourless oil: $R_f = 0.54$ (PE / Et₂O 6 : 4); $[\alpha]_D = +39.5^\circ$; ¹H NMR: see Table 2.

Synthesis of (S)-3-(4-methoxybenzyloxymethoxy)-2-(triisopropylsilyloxymethyl)-1-propanol (7). - Diprotected alkene obtained from monoacetate 4q (that is 4r) was ozonolyzed to aldehyde 6 as described in Ref. 1, except that an excess of NaBH4 was rapidly added as a solid, instead of Me₂S and pyridine, before allowing reaction mixture to slowly reach r. t.. Saturated aqueous NH4Cl was added, most methanol was evaporated under reduced pressure, and, after usual work up (AcOEt) and chromatography, pure alcohol 7 (81%) was obtained as a colourless oil; $R_f = 0.30$ (PE / Et₂O 6 : 4); $[\alpha]_D = +2.1^\circ$; ¹H NMR: 1.05 - 1.10 (m, 21 H, 3 x Me₂CHSi), 2.03 - 2.12 (m, 1 H, CH), 3.69 (app d, J 6.2 Hz, 2 H, CH₂OH), 3.81 (s, 3 H, MeO), 3.79 - 3.96 (m, 4 H, 2 x CH₂OR), 4.53 (s, 2 H, CH₂Ar), 4.72 (s, 2 H, OCH₂O), 6.86 - 6.92 (m, 2 H, ArH), 7.25 - 7.29 (m, 2 H, ArH).

The same procedure was applied to convert alkenes 4s (79%) and 4t (45%, not optimized) to alcohol 7, in order to check their enantiomeric purity.

General procedure for the synthesis of Mosher's esters of homoallylic and epoxy alcohols, as well as of alcohol 7. - Alcohol (0.1 mmol) was dissolved in dry $CH_2Cl_2(1 \div 2 ml)$ at 0°C and DMAP (0.6 mmol) and (R) or (S) Mosher's chloride (0.3 mmol) were added. Reaction was stirred at r. t. until substrate disappeared (2 ÷ 3 h), then directly deposed on a preparative TLC silica gel plate, which was eluted with PE / Et₂O 95 : 5 or 80 : 20. NMR spectra were recorded while irradiating the signal of methine $CH(CH_2OR)_2$ ($\delta \approx 2.22$ ppm for 7) and AB systems due to methylene CH_2OCO [for 7: δ 4.40 & 4.50, J_{AB} 10.7 Hz for ester derived from (R) Mosher's acyl chloride; δ 4.44 & 4.79, J_{AB} 10.7 Hz for ester derived from (S) Mosher's acyl chloride] of the two diastereomeric esters were used for quantitative determination.

<u>Synthesis of S)-1-(4-methoxybenzyloxymethoxy)-2-(triisopropylsilyloxymethyl)- 3(Z)-heptene (4s) and</u> of (S)-5-(4-methoxybenzyloxymethoxy)-4-(triisopropylsilyloxymethyl)-2(Z)-pentene (4t). - To a solution of aldehyde 6 [obtained through ozonolysis of 4r as described in ref. 1 and subjected to a rapid chromatography (PE / Et₂O 7 : 3, containing 0.1% of pyridine)] in dry THF containing a small amount of powdered 4 Å molecular sieves and cooled to -78°C, an excess $(3 \div 6 \text{ eq})$ of a freshly prepared solution of (ethylidene)triphenylphosphorane or (butylidene)triphenylphosphorane in dry THF containing a small amount of powdered 4 Å molecular sieves was added until red-orange colour persisted. Reaction mixture was allowed to reach r.t. and filtered washing with PE, in order to remove most of Ph₃PO. Crude product was chromatographated (PE / Et₂O 98 : 2, containing 0.5% of Et₃N) to give pure 4s (78%) or 4t (89%) as colourless oils. No trace of (E) stereoisomer was detected in either case.

4s: $R_f = 0.79$ (PE / Et₂O 7 : 3); [α]_D = -6.9°; ¹H NMR: 0.91 (t, J 7.3 Hz, 3 H, *Me*CH₂), 1.04 - 1.07 (m, 21 H, 3 x *Me*₂CHSi), 1.20 - 1.45 (m, 2 H, MeCH₂), 2.06 (dq, J 1.1 & 7.3 Hz, 2 H, CH₂CH=), 2.74 - 2.88 (m, 1 H, CHCH=), 3.58 & 3.70 (AB part of an ABX system, J 6.0 & 6.0 & 9.5 Hz, 2 H, CHCH₂O), 3.68 (app. d, J 6.8 Hz, 2 H, CH₂O), 3.80 (s, 3 H, *Me*O), 4.52 (s, 2 H, CH₂Ar), 4.72 (s, 2 H, OCH₂O), 5.29 - 5.40 (m, J_{3/4} 11.0* Hz, 1 H, =CHCH), 5.46 - 5.58 (m, 1 H, =CHCH₂), 6.85 - 6.89 (m, 2 H, ArH), 7.25 - 7.33 (m, 2 H, ArH).

4t: $R_f = 0.52$ (PE / Et₂O 85 : 15); $[\alpha]_D = -6.5^\circ$; ¹H NMR: 1.05 - 1.07 (m, 21 H, 3 x Me_2 CHSi), 1.67 (dd, J 1.7 & 6.7, 3 H, MeCH=), 2.86 (app d of quintuplet, J 6.0 & 9.4 Hz, 1 H, CHCH=), 3.58 & 3.72 (AB part of an ABX system, J 5.9 & 6.2 & 9.4 Hz, 2 H, CHCH₂O), 3.66 - 3.76 (m, 2 H, CHCH₂O), 3.81 (s, 3 H, MeO), 4.53 (s, 2 H, CH₂Ar), 4.73 (s, 2 H, OCH₂O), 5.36 (ddq, J 1.7 & 9.3 & 10.9 Hz, J_{3/4} 11.5* Hz, 1 H, =CHCH), 4.53 - 4.69 (m, 1 H, =CHMe), 6.84 - 6.90 (m, 2 H, ArH), 7.25 - 7.34 (m, 2 H, ArH).

General procedure for the synthesis of (R)-2-(4-methoxybenzyloxymethoxy)-3(Z)-hepten-1-ol (ent-4m). and (R)-2-(4-methoxybenzyloxymethoxy)-3(E)-penten-1-ol (ent-4o). - A solution of 4s or 4t (1 mmol) in THF (30 ml) was cooled to 0°C and 7 ml of a 0.5 M solution of TBAF in THF (3.5 mmol) were added. After stirring 15 h at r.t., brine (40 ml) and water (40 ml) were added and, after usual work-up (Et₂O) and chromatography (PE / Et₂O 45 : 55, containing 0.5% of Et₃N), pure ent-4m (92%) or ent-4o (97%) were obtained as colourless oils. ent-4m: $R_f = 0.34$ (PE / Et₂O 4 : 6); $[\alpha]_D = +31.8^\circ$; ent-4o: $R_f = 0.38$ (PE / Et₂O 4 : 6); $[\alpha]_D = +26.3^\circ$. ¹H NMR: see Table 2.

General procedure for the synthesis of (S)-2-(triisopropylsilyloxymethoxy)-3(Z)-hepten-1-ol (4n), and (S)-2-(triisopropylsilyloxymethoxy)-3(E)-penten-1-ol (4p), - A solution of 4s or 4t (1 mmol) in CH₂Cl₂ (15 ml) was added with 0.87 ml of a 0.2 M pH 7 phosphate buffer and 0.87 ml of t-BuOH and treated with 2 mmol of DDQ at r.t.. After 2 h, a saturated aqueous solution of NaHCO₃ was added. Usual work-up (Et₂O) and chromatography (PE / Et₂O 85 : 15) afforded pure 4n (62%) or 4p (95%) as colourless oils. 4n: $R_f = 0.39$ (PE / Et₂O 85 : 15); [α]_D = -28.7°. 4p: $R_f = 0.33$ (PE / Et₂O 8 : 2); [α]_D = -32.3°. ¹H NMR: see Table 2.

General procedure for epoxidation of homoallylic alcohols 4a - p.

<u>With MCPBA.</u> - Homoallylic alcohol (1 mmol) was dissolved in dry CH₂Cl₂ (10 ml) and treated with 2 mol of MCPBA at 0°C. Reactions were monitored by TLC (PE / Et₂O or PE / AcOEt). A freshly prepared 5% aqueous solution of NaHSO₃ (10 - 15 ml) was added and reaction mixture was extracted with Et₂O or AcOEt. The organic layer was washed with a saturated NaHCO₃ solution and then with brine, dried over Na₂SO₄, filtered and evaporated to give a crude product which was either rapidly chromatographated through a short silica gel pad ('filtered') (to collect the two diastereoisomeric epoxides together, in order to determine their relative ratio by NMR or GC or TLC techniques) or chromatographated ('flash' chromatography or preparative TLC) to give pure diastereoisomeric epoxides; in either cases the eluant (PE / Et₂O or PE / AcOEt) contained 0.5% of Et₃N. Chemical and stereochemical yields are reported in Table 1. Reaction times, along with details on purification and diastereoisomeric ratio determination and TLC data, are reported in Table 3. ¹H NMR data are reported in Table 4 (*anti* epoxides 8) and Table 5 (*syn* epoxides 9).

With VO(acac)2 and TBHP. - Homoallylic alcohol (1 mmol) was dissolved in dry CH2Cl2 (10 ml) and

Epox	React. ti	me (h)	Purification	F	ŀſ	Diastereomeric ratio determination
	МСРВА	TBHP		anti	s y n	
a	15	72	F (PE / AcOEt 6 : 4)	0.	33	PMR (MeCO)
b	4		C (PE / Et ₂ O 3 : 7)	0.32	0.37	PMR (CH2Ph & OH)
c	4	22	C (PE / Et ₂ O 6 : 4)	0.29	0.35	PMR [Me3Si, with Eu(fod)3]; GC
d	20	5	F (PE / Et ₂ O 3 : 7)	0.	25	PMR (MeCO)
e	4.5	5	F (PE / Et2O 6 : 4)	0.25	-	PMR (Me3Si)
ſ	15	150	F (PE / Et ₂ O 6 : 4 \rightarrow 4 : 6)	0.18 (4 : 6)	PMR (MeCO); ¹³ C NMR (C=O)
8	7	20	F (PE / Et ₂ O 4 : 6)	0.30	0.35	PMR (CH2Ph)
h	15	96	C (PE / Et ₂ O 7 : 3)	0.18	0.26	PMR (MeSi & OH); ¹³ C NMR (CMe3); GC
i	5.5	6	C (PE / Et ₂ O 6 : 4)	0.18	0.25	PMR (Me3Si in pyridine d-5); GC
1	4	5	TLC (PE / Et ₂ O 1 : 1)	0.29	0.36	PMR (CH2OCPh3); SD
m	-	5	TLC (PE / AcOEt 1 : 1)	0.38	-	PMR; TLC
n	-	22	C (PE / Et ₂ O 7 : 3)	0.24	-	PMR; TLC
0	-	2	C (PE / Et ₂ O 4 : 6)	0.35	-	PMR; TLC
P	-	22	C (PE / Et ₂ O 1 : 1)	0.27	-	PMR; TLC

Table 3. Experimental details for syntheses of epoxides 8 and 9

<u>F</u> = Filtration. <u>C</u> = Flash chromatography. <u>TLC</u> = Preparative thin layer chromatography. <u>PMR</u> = ¹H NMR. <u>GC</u> = Gas chromatography (Superox capillary column, T = 130°C, then 3°/min). <u>SD</u> = TLC spectrodensitometry (λ 254 nm).

treated with a catalytic amount of $VO(acac)_2$. The mixture was cooled to 0°C, added with TBHP (1.5 mmol), and then allowed to reach r.t.. Reactions were monitored by TLC and worked up as described for MCPBA epoxidations. For details, see Tables 1 and 3 - 5.

Synthesis of diprotected epoxide 16 from anti epoxide 8n. - To a solution of 1 mmol of monoprotected epoxide 8n ($[\alpha]_D = -13.3^\circ$) in 30 ml of dry CH₂Cl₂, (Me₂CH)₂NEt (2.3 mmol) and freshly prepared (4-*p*-methoxybenzyloxymethyl)chloride (2 mmol) were added at 0°C and reaction was stirred at r.t. overnight. Et₂NH (0.5 mmol) was added and, after stirring for 15', reaction mixture was diluted with brine and subjected to usual work-up (Et₂O). Chromatography (PE / Et₂O 85 : 15, containing 0.5% of Et₃N) afforded pure 16 (82%) as a colourless oil: $R_f = 0.34$ (PE / Et₂O 85 : 15); $[\alpha]_D = +4.0^\circ$; ¹H NMR: 0.80 - 1.00 (m, 3 H, MeCH₂), 1.00 - 1.10 (m, 21 H, 3 x Me₂CHSi), 1.40 - 1.60 (m, 4 H, CH₂CH₂), 1.50 - 1.80 (m, 1 H, CH₂CHCH₂), 2.90 - 3.05 (m, 2 H, 2 x CHO), 3.81 (s, 3 H, MeO), 3.81 - 3.86 (m, 4 H, 2 x CHCH₂), 4.54 (s, 2 H, CH₂Ar), 4.75 (s, 2 H, OCH₂O), 6.84 - 7.90 (m, 2 H, ArH), 7.26 - 7.32 (m, 2 H, ArH).

Synthesis of diprotected epoxide 17 from anti epoxide ent-8m. - To a solution of 1 mmol of monoprotected epoxide ent-8m ($[\alpha]_D = +13.8^\circ$) in dry DMF (2 ml), imidazole (3 mmol) and (triisopropylsilyl)chloride (1.5 mmol) were added at 0°C and reaction stirred at r.t. for 6 h. Saturated aqueous NH₄Cl solution (4 ml) and brine were added and reaction mixture was worked up as usual (CH₂Cl₂). Chromatography (PE / Et₂O 9 : 1, containing 0.5% of Et₃N) afforded pure 17 (82%) as a colourless oil: $R_f = 0.30$ (PE / Et₂O 9 : 1); $[\alpha]_D = -2.2^\circ$; ¹H NMR: 0.99 - 1.90 (m, 8 H, MeCH₂CH₂ & CH₂CHCH₂), 2.95 - 3.01 (m, 2 H, 2 x OCH), 3.69 - 3.95 (m, 4 H, 2 x OCH₂), 3.81 (s, 3 H, MeO), 4.52 & 4.72 (2 s, 2 H each, OCH₂O & OCH₂Ar), 6.42 - 7.28 (m, 4 H, ArH).

Synthesis of anti epoxide ent-8n from anti epoxide ent-8m. - A solution of 1 mmol of anti epoxide ent-

Table 4. ¹H NMR data for anti epoxides 8.

	OCHCH (1 H) ^a	OCHCH (1 H) ^a	С <i>H</i> 2ОН (2 H) ^a	CH2OR (2 H) ^a	Others
8	1.72-1.98 ^b	2.77 ¹	3.65 ^e (5.7)	4.24 ^e	0.97 (t, 3 H, J 7.0, MeCH ₂); 1.43-1.59 (m, 4 H, CH ₂ C
b	1.81 ^m	(5.6, 7.6) 2.79-2.89 ^f	3.76-3.91 ^b	(6.5) 3.64 ^e	2.08 (8, 3 H, MeCO); 2.83-2.92 (m, 1 H, CH2CH0). 0.95 (t, 3 H, J 7.2, Me); 1.38-1.58 (m, 4 H, CH2CH2); 4. 2 H, CH2Ph), 7 29-7.36 (m, 5 H, Ph).
c	<u>1.65</u> (6.3)	2.76 8 (2.4, 8.0)	3.71-3.88 ⁱ		0.07 (s, 6 H, 2 x MeSi); 0.89 (s, 9 H, Me ₃ C); 0.96 (t, 3 6.8, MeCH ₂); 1.42-1.57 (m, 4 H, CH ₂ CH ₂); 2.85 (dt, 1 2.3 & 5.4, CH ₂ CHO).
d	1.86-1.97 ^b	2.74 ⁿ (9.4)	3.63-4.00 ^b	4.20 ^e (6.4)	1.40-1.80 (m, 10 H, cyclohexane ring CH ₂); 2.09 (s, MeCO).
e	1.76-1.84 ^b	2.75 ⁿ (9.2)	3.80-3.95 ^b	3.75 ^e (5.2)	0.07 (s, 6 H, 2 x Me Si), 0.90 (s, 9 H, Me 3CSi).1.40-1.8 10 H, cyclohexane ring CH2).
ſ	1.63-1.91 ^b	2.97 ^c (4.1)	3.79 & 3.86 ^d (4.4, 8.4, 12.0)	4.21 ^e (6.2)	1.00 (t, 3 H, J 7.0, MeCH ₂); 1.43-1.63 (m, 4 H, CH ₂ C 2.09 (s, 3 H, MeCO); 3.04-3.07 (m, 2 H, J ₃ /4 4.2*, CH ₂ Cl
8	1.70-1.90 ^b	2.92-3.02 ^f	3.86 & 3.94 ^d (6.0, 6.2, 10.6)	3.59 ^c (6.1)	0.96 (t, 3 H, J 6.8, <i>Me</i>); 1.40-1.60 (m, 4 H, CH ₂ CH ₂); 4 2 H, CH ₂ Ph), 7.33-7.34 (m, 5 H, <i>Ph</i>).
h	1.72 ^g (4.4)	2.91-3.02 ^f (J ₃ ;4 4.3*)	3.69-3.99 ⁱ		0.07 (s, 6 H, 2 x MeSi), 0.90 (s, 9 H, Me3CSi); 0.99 (t, 3 6.9, MeCH2); 1.40-1.60 (m, 4 H, CH2CH2).
i	1.74 ⁸ (4.5)	2.79-2.97 ^f	3.79-4.04 ^b	3.76 ^e (5.8)	0.92 (t, 3 H, J 6.5, <i>Me</i> CH ₂); 1.06 (s, 9 H, <i>Me</i> ₃ CSi); 1.3 (m, 4 H, CH ₂ CH ₂); 7.38-7.71 (m, 10 H, 2 x <i>Ph</i>).
1	1.83 ^g (4.5)	2.92-2.98 ^f	3.84 & 3.92 ^d (6.9, 7.1, 10.9)	3.24 ^e (5.8)	0.85-0.97 (m, 3 H, <i>Me</i>); 1.25-1.50 (m, 4 H, CH ₂ CH ₂); 7.45 (m, 15 H, 3 x <i>Ph</i>).
m	1.66-1.87 ^b	2.95 ^c (4.8)	3.84 & 3.92 ^d (5.4, 5.6, 11.0)	3.69 ^e (6.0)	0.99 (t, 3 H, J 7.1, <i>Me</i> CH ₂); 1.40-1.60 (m, 4 H, CH ₂ C 2.80-3.02 (m, 1 H, CH ₂ CHO); 3.81 (s, 3 H, <i>Me</i> O), 4.53 H, CH ₂ Ar), 4.73 (s, 2 H, OCH ₂ O), 6.87-7.29 (m, 4 H, An
n	1.75 ^h (2.2, 5.5)	2.96 ^d (4.1)	3.78-4	.01 ⁱ	0.94 - 1.12 (m, 24 H, 3 x MeCHSi & MeCH ₂); 1.40 - 1.0 4 H, CH ₂ CH ₂); 2.98-3.02 (m, 1 H, CH ₂ CHO);
0	1.73-1.90 ^b	2.95 ¹ (4.3, 9.3)	3.69 ^e (6.0)	3.84 & 3.93 ^c (5.3,	1.32 (d, 3 H, J 5.5, MeCHO); 3.12 (dq, 1 H, J 4.3 & MeCHO); 3.81 (s, 3 H, MeO); 4.54 (s, 2 H, CH ₂ Ar); 4.7:
p	1.68-1.83 ^b	2.97	3.79-4	<u> 5.6, 10.8) </u> .01 ⁱ	1.00-1.15 (m, 21 H, 3 x Me_2CHSi); 1.33 (d, 3 H, .

^a Coupling constants J (Hz) are reported in parentheses; a * means that the value was obtained through double resonance e ments. ^b Multiplet. ^c AB Part of an ABX system. ^d Apparent triplet. ^e Apparent doublet. ^f Multiplet, 2 H, 2 x CHO. ^g App decuplet. ^h Doublet of quintuplet, ⁱ Multiplet, 4 H. ¹ Doublet of doublet. ^m Apparent sextuplet. ⁿ Doublet.

8m ($[\alpha]_D = +13.8^\circ$) in dry CH₂Cl₂ (9 ml) was cooled to 0°C and added with i-Pr₂NEt (2.6 mmol PhCH₂OCH₂Cl (2.4 mmol). After stirring at r.t. for 20 h, then Et₂NH (1 mmol) was added and stirring c ued for 15'. Brine was added and reaction was worked up as usual (Et₂O) to give, after chromatographic

Table 5. ¹H NMR data for synepoxides 9.

	OCHC <i>H</i>	OCHCH	С <i>Н</i> 2ОН	CH2OR	Others			
	(1 H) ^a	(1 H) ^a	(2H) ^a	(2 H) ^a				
8	1.72-1.98 ^b	2.77 ⁱ	3.73 & 3.77 ^d	4.26 ^f	0.97 (t, 3 H, J 7.0, MeCH2); 1.43-1.59 (m, 4 H, CH2CH2);			
		(5.8, 7.6)	(5.0, 5.0, 11.3)	(5.6)	2.09 (s, 3 H, MeCO); 2.83-2.92 (m, 1 H, CH ₂ CHO).			
b	1.82 ^l	2.80-2.89 ^c	3.80 ^c (5.5)	3.70 & 3.73 ^d	0.96 (t, 3 H, J 7.0, Me); 1.42-1.53 (m, 4 H, CH2CH2); 4.53			
	(5.6)			(Jgem 9.2*)	(s, 2 H, CH ₂ Ph), 7.31-7.36 (m, 5 H, Ph).			
c	1.52-1.70 ^b	2.78 ⁱ	3.76-	3.93h	0.08 & 0.08 (2 s, 3 H each, 2 x MeSi), 0.90 (s, 9 H,			
		(2.4, 7.3)			Me3CSi); 0.97 (t, 3 H, J 6.8, MeCH2); 1.40-1.51 (m, 4 H,			
					CH2CH2); 2.86 (dt, 1 H, J 2.4 & 5.3, CH2CHO).			
d	1.86-1.97 ^b	2.73 ^m	3.63-4.00 ^b	4.18-4.39 ^b	1.40-1.80 (m, 10 H, cyclohexane ring CH2); 2.11 (s, 3 H,			
		(9.5)			MeCO).			
ſ	1.63-1.91 ^b	2.97 ^c	3.66 ^c	4.34 & 4.42 ^d	1.00 (t, 3 H, J 7.0, MeCH ₂); 1.43- 1.63 (m, 4 H,			
		(4.1)	(5.6)	(4.4, 5.2, 10.6)	CH2CH2); 2.11 (s, 3 H, MeCO); 3.04-3.07 (m, 1 H, J3/4			
					4.2*, CH ₂ CHO).			
8	1.70-1.90 ^b	2.92-3.02 ^e	3.76-3.97 ^b	3.50- 3.70 ^b	0.96 (t, 3 H, J 6.8, Me); 1.40-1.60 (m, 4 H, CH2CH2); 4.57			
					(s, 2 H, CH ₂ Ph), 7.33-7.34 (m, 5 H, Ph).			
h	1.52-1.70 ^b	2.94-3.06 ^e	3.81-3.87 ^b	3.92 & 4.01 ^d	0.10 & 0.11 (2 s, 3 H each, 2 x MeSi), 0.91 (s, 9 H,			
				(3.4, 6.2, 10.0)	Me 3CSi). 0.97 (t, 3 H, J 7.0, MeCH2); 1.40-1.51(m, 4 H,			
					CH2CH2).			
i	1.30-2.00 ^b	2.98-3.04 ^e	3.86 ^c	3.94-4.15 ^b	0.98 (t, 3 H, J 7.0, MeCH2); 1.08 (8, 9 H, Me3CSi), 1.30-			
			(5.7)		2.00 (m, 4 H, CH2CH2); 7.38-7.71 (m, 10 H, 2 x Ph).			
1	1.50-1.90 ^b	2.97-3.08 ^e	3.70-4.00 ^b	3.45 ^f	0.85-1.02 (m, 3 H, Me); 1.25-1.50 (m, 4 H, CH ₂ CH ₂);			
				(5.1)	7.24-7.48 (m. 15 H. 3 x Ph).			

^a Coupling constants J (Hz) are reported in parentheses; a * means that the value was obtained through double resonance experiments. ^b Multiplet. ^c Apparent triplet. ^d AB Part of an ABX system. ^e Multiplet, 2 H, 2 x CHO. ^f Apparent doublet. ^g Apparent doublet of quintuplet. ^h Multiplet, 4 H. ⁱ Doublet of doublet. ^l Apparent sextuplet. ^m Doublet.

cation (PE / Et₂O 7 : 3), pure diprotected epoxide as a colourless oil: $R_f = 0.36$ (PE / Et₂O 7 : 3); $[\alpha]_D = +3.1^\circ$; ¹H NMR: 0.99 (t, 3 H, J 6.9 Hz, *Me*CH₂), 1.36 - 1.70 (m, 4 H, MeCH₂CH₂), 1.74 - 1.94 (m, 1 H, CHCH₂O), 2.93 - 3.04 (m, 2 H, 2 x OCH), 3.68 & 3.77 (2 H, AB part of an ABX system, J 3.8 & 6.4 & 9.7 Hz, CH₂OR), 3.80 (s, 3 H, *Me*O), 3.82 (d, 2 H, J 5.3 Hz, CH₂OR), 4.52 (s, 2 H, CH₂Ar), 4.61 (s, 2 H, CH₂Ph), 4.72 (s, 2 H, OCH₂OCH₂Ar), 4.78 (s, 2 H, OCH₂OCH₂Ph), 6.85 - 6.90 (m, 2 H, ArH), 7.20 -7.36 (m, 7 H, ArH).

Diprotected epoxide (1 mmol) was dissolved in dry CH₂Cl₂ (12 ml) and treated with 0.85 ml of 0.2 M pH 7 phosphate buffer, 0.85 ml of *t*-BuOH, and 2 mmol of DDQ. After stirring at r.t. for 80', saturated aqueous NaHCO₃ was added. Usual work up (Et₂O) and chromatographic purification of crude product (PE / Et₂O 4:6) afforded pure monoprotected *syn* epoxide as a colourless oil: $R_f = 0.31$ (PE / Et₂O 6:4), $[\alpha]_D = -6.5^\circ$; ¹H NMR: 0.80 - 1.00 (m, 3 H, *Me*CH₂), 1.40 - 1.70 (m, 4 H, CH₂CH₂), 1.68 - 1.82 (m, 1 H, CHCH₂O), 2.95 - 3.06 (m, 2 H, 2 x CHO), 3.72 - 4.00 (m, 4 H, 2 x CH₂O), 4.63 (s, 2 H, CH₂Ph), 4.80 (s, 2 H, OCH₂O), 7.29 - 7.38 (m, 5 H, *Ph*).

Cpd	Formula H%		1%	6 C%		Cpd	Formula	H%		C%			
-		Calc	Found	Calc	Found			Calc	Found	Calc	Found		
4 b	C15H22O2	9.16	9.00	76.88	77.00	8d	C ₁₂ H ₂₀ O ₄	8.83	8.78	63.14	63.76		
4c	C14H30O2Si	11.70	11.66	65.06	64.87	8e	C ₁₆ H32O3Si	10.73	10.76	63.95	64.65		
4e	C ₁₆ H ₃₂ O ₂ Si	11.34	10.27	67.55	66.99	18	C ₁₇ H36O3Si	11.46	11.25	64.50	65.06		
4 g	C15H22O2	9.16	9.11	76.88	77.01	8g	C15H22O3	8.86	8.93	71.97	72.06		
4 h	C14H30O2Si	11.70	11.47	65.06	64.76	8h	C14H30O3Si	11.02	11.16	61.26	61.50		
41	C24H34O2Si	8.96	8.92	75.34	75.36		C24H34O3Si	8.60	8.66	72.32	72.48		
41	C27H38O2	7.82	7.99	83.90	84.22	81	C27H30O3	7.51	7.60	80.56	80.70		
4 m	C17H26O4	8.90	8.91	69.36	68.96	8 m	C17H36O5	8.44	8.31	65.78	65.88		
4 n	C17H36O2Si	12.07	12.01	67.94	67.50	8n	C17H36O3Si	11.46	11.79	64.50	64.00		
40	C15H22O4	8.33	8.36	67.65	67.05	80	C15H22O5	7.85	7,99	63.81	63.99		
4p	C15H32O2Si	11.84	11.76	66.11	66.00	8p	C15H32O3Si	11.18	11.34	62.45	62.98		
4 s	C24H42O4Si	10.02	9.98	68.20	68.20	8f	C ₁₇ H36O3Si	11.46	11.25	64.50	65.06		
4t	C26H46O4Si	10.29	10.40	69.28	69.55	12	C19H30O4	9.38	9.36	70.77	71.00		
7	C22H40O3Si	10.59	10.66	69.42	69.36	13	C30H36O3	8.16	7.99	81.04	81.16		
8a	C ₁₀ H ₁₈ O ₄	8.87	8.99	59.39	59.03	14	C ₂₀ H ₃₆ O ₃ Si	10.29	10.36	68.13	67.89		
8b	C15H22O3	8.86	8.66	71.97	71.66	15	C26H46O5Si	9.93	9.76	66.91	66.18		
8c	C14H30O3Si	11.02	10.97	61.26	61.54	16	C26H46O5Si	9.93	9.88	66.91	66.04		

Table 6. Analytical data for some selected compounds.

Syn monoprotected epoxide (1 mmol) was dissolved in dry DMF (7 ml), cooled to 0°C, and treated with imidazole (3 mmol) and triisopropylsilylchloride (1.5 mmol). After stirring at r.t. for 6 h, saturated aqueous NH₄Cl (4 ml) and brine were added, and reaction mixture was worked up as usual (CH₂Cl₂) to give, afte chromatographic purification (PE / Et₂O 9 : 1 \rightarrow 4 : 6), pure diprotected epoxide (55%; quantitative if based of unrecovered substrate) as a colourless oil: $R_f = 0.38$ (PE / Et₂O 9 : 1); [α]_D = +2.3°; ¹N NMR: 0.90 - 1.10 (m 24 H, 3 x *MeCHSi & MeCH*₂), 1.10 - 1.80 (m, 5 H, CH₂CH₂ & CHCH₂O), 2.94 - 3.00 (m, 2 H, 2 x CHO) 3.82 - 3.86 (m, 4 H, 2 x CH₂O), 4.62 (s, 2 H, CH₂Ph), 4.78 (s, 2 H, OCH₂O), 7.30 - 7.36 (m, 5 H, Ph).

Diprotected epoxide (1 mmol) was dissolved in absolute MeOH (35 ml) and hydrogenated overnight a r.t. and normal pressure in the presence of CaCO₃ (460 mg) and a catalytic amount of 10% palladium on activated charcoal. Filtration through a celite pad and evaporation afforded pure *anti* monoprotected epoxide *ent*-**8**₁ (73%) as a colourless oil: $[\alpha]_D = +10.2^\circ$; ¹H NMR: see Table 4.

Synthesis of cis dioxolane 12 from anti epoxide 8h and of trans dioxolane 13 from syn epoxide 9h. - A solution of 1 mmol of 8h in dry CH₂CH₂ (15 ml) was cooled to 0°C and added with *i*-Pr₂NEt (2.8 mmol) an freshly distilled PhCH₂OCH₂CI (2.5 mmol). After stirring for 29 h at r.t., Et₂NH (0.7 mmol) was added and stirring continued for 15'. Brine was added and, after usual work up (Et₂O) and chromatographic purification (PE / Et₂O 9 : 1), pure diprotected epoxide was obtained (87%) as a colourless oil: $R_f = 0.23$ (PE / Et₂O 9 : 1); $[\alpha]_D = +1.4^\circ$; ¹H NMR: 0.05 (s, 6 H, 2 x MeSi), 0.89 (s, 9 H, Me₃C), 0.99 (t, 3 H, J 6.9 Hz, MeCH₂), 1.30 - 1.78 (m, 5 H, CH₂CH₂ & CHCH₂O), 2.92 (app t, 1 H, J 4.6 Hz, CHCHO), 2.95 - 3.03 (m, 1 H CH₂CHO), 3.68 - 3.80 (m, 4 H, 2 x CH₂O), 4.61 (s, 2 H, CH₂Ph), 4.78 (s, 2 H, OCH₂O), 7.31 - 7.36 (m 5 H, Ph).

A solution of 1 mmol of diprotected epoxide in dry THF (40 ml) was cooled to 0°C and added to a sus pension of LiAlH4 (1 mmol) in dry THF (60 ml). The reaction mixture was refluxed for about 5 h, then coole

to 0°C and added with NaOH (1 mmol) dissolved in H₂O (1.4 ml). After stirring overnight, the reaction was filtered through a celite pad (washing with Et₂O), dried over anhydrous Na₂SO₄, filtered, and solvent evaporated to give, after chromatographic separation (PE / Et₂O 4 : 6 \rightarrow 0 : 1), pure monoprotected triol, *i. e.* 2-(benzyloxymethoxymethyl)-1,3-heptanediol (30%): R_f = 0.15 (PE / Et₂O 4 : 6); ¹H NMR: 0.91 (t, 3 H, J 7.0 Hz, MeCH₂), 1.29 - 1.68 (m, 6 H, CH₂CH₂CH₂), 1.84 (app sextuplet, 1 H, J 5.5, CHCH₂O), 2.18 (t, 1 H, J 5.5, CH₂OH), 2.46 (d, 1 H, J 5.6 Hz, CHOH), 3.77 - 3.94 (m, 5 H, 2 x CH₂O & CHO), 4.62 (s, 2 H, CH₂Ph), 4.77 (s, 2 H, OCH₂O), 7.33 - 7.37 (m, 5 H, Ph).

A solution of 1 mmol of monoprotected triol in dry CH₂Cl₂ (30 ml) was cooled to 0°C and treated with 3 mmol of 2-methoxypropene and a catalytic amount (0.02 mmol) of PTSA. After stirring 10' at the same temperature, Et₃N (0.03 mmol) was added and solvent was evaporated under reduced pressure. Chromatographic purification (PE / Et₂O 8 : 2) afforded pure dioxolane 12 (94%): $R_f = 0.38$ (PE / Et₂O 8 : 2); $[\alpha]_D = +14.7^\circ$; ¹H NMR: 0.90 (t, 3 H, J 6.1, *Me*CH₂), 1.20 - 1.50 (m, 6 H, CH₂CH₂CH₂), 1.38 & 1.45 (2 s, 3 H each, *Me*₂C), 1.55 - 1.65 (m, 1 H, CHCH₂OBOM), 3.73 & 3.92 (AB part of an ABX system, 2 H, J 4.7 & 9.5 & 9.7 Hz, CH₂OBOM), ≈3.90 (m, 1 H, CHO), 3.97 & 4.03 (AB part of an ABX system, 2 H, J 1.6 & 2.8 & 11.7 Hz, CH₂OCMe₂), 4.59 & 4.62 (AB part of an ABX system, J_{gem} 11.9* Hz, CH₂Ph), 4.79 (s, 2 H, OCH₂O), 7.20 - 7.45 (m, 5 H, *Ph*).

In a similar way 13 was obtained from 9h: ¹H NMR: 0.90 (t, 3 H, J 6.1, $MeCH_2$), 1.20 - 1.50 (m, 6 H, $CH_2CH_2CH_2$), 1.38 & 1.43 (2 s, 3 H each, Me_2C), 1.75 - 1.94 (m, 1 H, $CHCH_2OBOM$), 3.47 & 3.49 (AB part of an ABX system, 2 H, J 2.5 & 8.4 & 10.0 Hz, CH_2OBOM), ≈ 3.65 (m, 1 H, CHO), ≈ 3.95 (m, 2 H, CH_2OCMe_2), 4.58 (s, 2 H, CH_2Ph), 4.71 (s, 2 H, OCH_2O), 7.20 - 7.45 (m, 5 H, Ph).

Synthesis of trans dioxolane 14 from anti epoxides 81 and of trans dioxolane 15 from anti epoxide 8p. - A solution of 1 mmol of anti epoxide 81 in dry THF (40 ml) was cooled to 0°C and added to a suspension of LiAlH₄ (1 mmol) in dry THF (60 ml). The reaction mixture was refluxed for about 36 h, then cooled to 0°C and added with NaOH (1 mmol) dissolved in H₂O (1.4 ml). After stirring overnight, the reaction was filtered through a celite pad (washing with Et₂O), dried over anhydrous Na₂SO₄, filtered, and solvent evaporated to give, after preparative TLC (PE / AcOEt 6 : 4), pure monoprotected triol, *i. e.* 2-(triphenylmethoxymethyl)-1,3-heptanediol (31%): $R_f = 0.47$ (PE / AcOEt 6 : 4); ¹H NMR: 0.88 (t, 3 H, J 7.0, MeCH₂), 1.25 - 1.66 (m, 6 H, CH₂CH₂CH₂), 1.75 (app sextuplet, J 5.5 Hz, CH₂OH), 2.33 - 2.41 (m, 2 H, 2 x OH), 3.31 & 3.39 (AB part of an ABX system, 2 H, J 5.1 & 5.7 & 9.5 Hz, CH₂OH), 3.86 (app q, 1 H, J 4.8 Hz, J_{2/3} 4.4*, J_{3/4} 4.2*, CHOH), 3.89 & 3.97 (AB part of an ABX system, J 4.7 & 4.8 & 11.1 Hz, CH₂OTr), 7.20 - 7.46 (m, 15 H, 3 x Ph).

A solution of 1 mmol of monoprotected triol in dry CH₂Cl₂ (30 ml) was cooled to 0°C and treated with 3 mmol of 2-methoxypropene and a catalytic amount (0.02 mmol) of PTSA. After stirring 10' at the same temperature, Et₃N (0.03 mmol) was added and solvent was evaporated under reduced pressure. Chromatographic purification (PE / Et₂O 9 : 1) afforded pure dioxolane 14 (51%): $R_f = 0.66$ (PE / Et₂O 8 : 2); ¹H NMR: 0.80 - 0.92 (m, 3 H, *Me*CH₂), 1.17 - 1.56 (m, 6 H, CH₂CH₂CH₂), 1.38 & 1.44 (2 s, 3 H each, *Me*₂C), 1.70 - 1.94 (m, 1 H, CHCH₂OTr), 2.94 & 3.07 (AB part of an ABX system, 2 H, J 4.4 & 6.5 & 9.6 Hz, CH₂OTr), 3.71 - 3.79 (m, 1 H, OCH), 3.88 - 3.92 (m, 2 H, CH₂OCMe₂), 7.23 - 7.44 (m, 15 H, 3 x *Ph*).

In a similar way 15 was obtained from 8p: $R_f = 0.57$ (PE / Et₂O 95 : 5); ¹H NMR: 0.94 (t, 3 H, J 7.4, MeCH₂), 1.00 - 1.06 (m, 21 H, 3 x Me₂CH), 1.10 - 1.45 (m, 2 H, CH₂Me), 1.39 & 1.43 (2 s, 3 H each, Me₂C), 1.60 - 1.83 (m, 1 H, CHCH₂O), 3.58 - 4.00 (m, 5 H, 2 x CH₂O & OCH).

\$

REFERENCES AND NOTES

- 1. Guanti, G.; Banfi, L.; Narisano, E. J. Org. Chem. 1992, 57, 1540-1554 and references therein.
- (a) Guanti, G.; Banfi, L.; Narisano, E. Tetrahedron Lett. 1990, 31, 6421-6424.
 (b) Guanti, G.; Banfi, L.; Narisano, E. Tetrahedron Lett. 1991, 32, 6939-6942.
- Actually, thank to the enantiodivergency of these BHYMA* equivalents, either enantiomeric forms of homoallylic alcohols were used at times in this work, but for sake of simplicity the same enantiomer is generally used in most Schemes and discussion.
- 4. Part of these results have been published in a preliminary form (Guanti, G.; Banfi, L.; Narisano, E.; Thea, S. *Tetrahedron Lett.* 1991, 32, 6943-6946).
- 5. (a) Review: Rao, A. S.; Paknikar, S. K.; Kirtane, J. G. Tetrahedron 1983, 39, 2323-2367.
 (b) Katsuki, T.; Hanamoto, T.; Yamaguchi, M. Chemistry Lett. 1989, 117-118.
 (c) Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed, L. A. III; Sharpless, K. B.; Walker, F. J. Tetrahedron 1990, 46, 245-264.
 (d) Wang, Z.; Schreiber, S. L. Tetrahedron Lett. 1990, 31, 31-34.
- 6. When this treatment was omitted, a dramatic drop in chemical yield was observed. Alternatively, aldehyde 6 could be obtained also from oxidation of alcohol 7, in turn obtained via ozonolysis, followed by NaBH₄ reduction, of alkene 4r. A major problem in this route was the racemisation of aldehyde itself. Usual Swern conditions (Et₃N, -78°C → -30°C, neutral work-up) lead to partial racemisation (aldehyde 6 in 70% e. e., starting from monoacetate 4q having > 95% e. e.). Employing diisopropylethylamine instead of triethylamine (see Walba, D. M.; Thurmes, W. N.; Altiwanger, R. C. J. Org. Chem. 1988, 53, 1046-1056) and working up the reaction at acidic pH (pH ≈ 3) a neat improvement in the enantiospecific synthesis of diprotected BHYMA* equivalents was obtained (Banfi, L.; Guanti, G.; Narisano, E. Tetrahedron, in course of publication).
- 7. Review: Bestmann, H. J.; Vostrowsky, O. Topics Curr. Chem. 1983, 109, 85.
- 8. Dale J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549.
- 9. Widmer, U. Synthesis, 1987, 568-570.
- 10. (a) Review: Pfenninger, A. Synthesis 1986, 89-116.
 (b) Rossiter, B. E.; Sharpless, K. B. J. Org. Chem. 1984, 49, 3707-3711 and references therein.
- 11. (a) Johnson, M. R.; Kishi, Y. Tetrahedron Lett. 1979, 4347-4350.
 - (b) Mihelich, E. D.; Daniels, K.; Eickhoff, D. J. J. Am. Chem. Soc. 1981, 103, 7690-7692.
 - (c) Narula, A. S. Tetrahedron Lett. 1983, 24, 5421-5424.
 - (d) Kobayashi, Y.; Uchiyama, H.; Kanbara, H.; Sato, F. J. Am. Chem. Soc. 1985, 107, 5541-5543.
 - (e) Boschelli, D.; Takemasa, T.; Nishitani, Y.; Masamune, S. Tetrahedron Lett. 1985, 26, 5239-5242.
 - (f) Hanamoto, T.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1987, 28, 6191-6194 & 6195-6198.
 - (g) Boschetti, A.; Panza, L.; Ronchetti, F.; Russo, G. J. Chem. Soc., Perkin 1 1988, 3353-3357.
 - (h) Kocovsky, P.; Stary, I. J. Org. Chem. 1990, 55, 3236-3243.
 - (i) Hoppe, D.; Tarara, G.; Wilckens, M. Synthesis 1989, 83-88.
 - (1) Mori, K.; Takahashi, Y. Justus Liebigs Ann. Chem. 1991, 1057-1065.
- 12. No diastereoselectivity was found in the MCPBA epoxidation of a monoprotected 2-vinyl-1,3-propanediol (see ref. 11l).
- (a) Paddon-Row, M. N.; Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1982, 104, 7162-7166.
 (b) Kahn, S. D.; Pau, C. F.; Chamberlin, A. R.; Hehre, W. J. J. Am. Chem. Soc. 1987, 109, 650-663.
- 14. Details on the reductive opening of the oxiranic ring will be reported in a forthcoming paper.
- 15. A series of variously substituted dioxolanes has been synthesised in our laboratory from BHYMA* equivalents: a thorough NMR study will be reported in a separate paper.
- 16. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.