Sweetness of Hesperetin Dihydrochalcone Derivatives Linked to ω -Amino Acid or Its Oligomer

Masao Kawai,* Kyoko Kuwabara, Ritsuko Kimura, and Sachiko Sekido Mitsubishi-Kasei Institute of Life Sciences, Minamiooya 11, Machida, Tokyo 194 (Received May 15, 1982)

Synopsis. Derivatives of hesperetin dihydrochalcone having ω -amino acid, oligoglycine, or oligo- $(\gamma$ -aminobutyric acid) were synthesized and tasted. The hydrophobicity of the introduced group is important for understanding the structure-sweet taste relationship of these compounds, though other factors than hydrophobicity also must be taken into account.

Neohesperedin dihydrochalcone (1) is an intensely sweet substance derived from a rind-constituent of citrus fruits.¹⁾ The aglycone of 1, namely hesperetin dihydrochalcone (2) (DHC-OH), and its ω -carboxyalkyl derivatives DHC-O(CH₂)_mCO₂H (3) (m=1, 3) and ω -sulfoalkyl derivatives DHC-O(CH₂)_mSO₃H (4) (m=1-4) are also known to elicit sweet sensation.²⁾ We have attempted to prepare derivatives of 2 having an amino acid or peptide in group R in Fig. 1 for the purpose of investigating the structure-sweet taste relationship of these compounds.

Results and Discussion

Oligomers of glycine were introduced to $3 \ (m=3)^3$) affording DHC-O(CH₂)₃CO(NHCH₂CO)_nOH (5). Results of semiquantitative taste evaluation are given in Table 1. The compound having one glycyl residue, $5 \ (n=1)$, is sweeter than the parent compound $3 \ (m=3)$, but further addition of glycyl residue results in decrease in sweetness. Another series of derivatives prepared includes those having ω -amino acid residue

Fig. 1. Structure of hesperetin dihydrochalcone derivatives (DHC-OR).

1: $R = C_{12}H_{21}O_9$ (β -neohespesperidosyl), 2: R = H, 3—8: see text and Tables 1 and 2.

in the side chain, namely DHC-O(CH₂)₃CONH-(CH₂)_nCO₂H (6), the sweetness of which is summarized in Table 2. Successive addition of a methylene group causes marked decrease in sweet potency, finally giving tasteless derivative 6 (n=5).

Since the sweetness of aglycone 2 is of the same order of magnitude as that of the parent glycoside $1,^{2a}$ group R in Fig. 1 is considered not to be directly involved in the interaction of these sweetener molecules with the taste receptors. DuBois et al.⁴ recently reported zwitterionic amino acid derivatives of 2, relating their relative sweetness to a chromatographic parameter which quantitates the hydrophobic-hydrophilic balance of molecule. We assumed that the change in hydrophobicity caused by the introduction of group R would mainly affect the sweet potency. Thus the structure-sweet taste relationship found here for the 5 and 6 series can be explained in terms of increase and decrease in hydrophobicity of molecule,

Table 1. Relative sweetness, melting points, and analytical data of DHC-O(CH₂)₃CO(NHCH₂CO)_nOH (5)

n	Relative sweetness ⁵⁾	${ m Mp} heta_{ m m}/^{ m CC}$ (crystallized from)	Found(%)			$\operatorname{Calcd}(\%)$		
			$\widetilde{\mathbf{c}}$	H	N	$\widehat{\mathbf{c}}$	H	N
()a)	300	190—192 ^{b)} (EtOH)						
1	500	126—130 (MeOH)	58.18	5.65	3.14	5 7.8 9	5.74	3.07c
2	400	175—176 (MeOH)	56.61	5.67	5.24	56.63	5.64	5.50ª
3	300	110—118 (MeOH-AcOEt)	53.20	5.57	7.25	53.06	5.82	7.14
4	200	200—205 (MeOH)	51.72	5.88	8.94	52.09	5.78	8.68

a) Compound **3** (m=3). b) Ref. 3, 193—195 decomp. c) $\frac{1}{2}H_2O$. d) $\frac{1}{4}H_2O$. e) $\frac{3}{2}H_2O$.

Table 2. Relative sweetness, melting points, and analytical data of $DHC\text{-}O(CH_2)_3CONH(CH_2)_nCO_2H \ \, \textbf{(6)}$

n	Relative sweetness ⁵⁾	${ m Mp} heta_{ m m}/^{ m o}{ m C}$ (crystallized from)	$\mathbf{Found}(\%)$			$\mathbf{Calcd}\left(\% ight)$		
			$\widehat{\mathbf{c}}$	H	$\widetilde{\mathbf{N}}$	$\widehat{\mathbf{c}}$	H	$\widetilde{\mathbf{N}}$
1a)	500	see Table 1					. 4	
2	200	66—68 (lyophilized)	60.13	5.66	3.07	59 .8 6	5.90	3.04
3	200	178—183 (MeOH)	60.20	6.14	3.03	60.62	6.15	2.95
4	100	166—167 (MeOH)	60.03	6.33	2.74	59 .8 7	6.76	2.69b
5	0	204—208 decomp (MeOH-AcOEt)	61.63	6.51	2.60	62.01	6.61	2.78

a) Compound 5 (n=1). b) $C_{25}H_{31}O_{9}N \cdot CH_{3}OH$.

respectively, suggesting that group R be required to possess optimal hydrophobicity for showing sweet taste. Indeed, maximal sweetness is developed for the compounds of the 4 series when the number of methylenes is 2.2b) In the case of DHC-OCH₂CONH(CH₂)_n-CO₂H (7), relative sweetness⁵⁾ is as follows: 200 (n= 1), 200-300 (n=2), 200 (n=3), and 100-200 (n=3)5), i.e., the compound (n=2) is the sweetest in this series, though its sweetness is less than that of 5 (n=1). In view of substituent constants of hydrophobic parameters⁶⁾ it is expected that the hydrophobicity of a molecule will not be much affected by the introduction of a γ -aminobutyric acid residue NH(CH₂)₃CO. The sweetness of $DHC-O(CH_2)_3CO[NH(CH_2)_3CO]_nOH$ (8) (100, n=2; 0, n=4)⁵⁾ is, however, less than those of the corresponding oligoglycine derivatives 5, indicating that not only the hydrophobicity but also other factors must be considered for better understanding of the structure-sweet taste relationship of these compounds.

Experimental

Melting points were uncorrected. Compounds 3 (m=1 and 3) were prepared from hesperetin as described in Ref. 3.

N-Hydroxysuccinimide Ester of 3 (m=3). To an ice-cooled solution of 4 mmol of 3 (m=3) and 6 mmol of N-hydroxysuccinimide in tetrahydrofuran (10 cm³) was added 4.4 mmol of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and the mixture was stirred at room temperature. After 42 h the solution was evaporated and the residue dissolved in AcOEt was washed successively with aqueous solutions of 10% citric acid, 4% NaHCO₃, and saturated NaCl. The N-hydroxysuccinimide ester was crystallized from AcOEt-hexane, mp 137—142 °C (Found: C, 58.55; H, 5.29; N, 2.93%. $C_{24}H_{25}O_{10}\cdot \frac{1}{4}H_{2}O$).

General Procedures. Method A: Amino acid or peptide (0.6-0.7 mmol) was dissolved in H_2O containing Et_3N (0.6-0.7 mmol) and added to a solution of 0.5 mmole of N-hydroxysuccinimide ester of $3 \ (m=3)$ in tetrahydrofuran. After stirring at room temperature the reaction mixture was acidified and evaporated and the residue was subjected to Sephadex LH-20 column chromatography using MeOH as eluent. Crystallization from MeOH or MeOH-AcOEt afforded the desired product $5 \ \text{or} \ 6$.

Method B: To a solution of hydrochloride of methyl or ethyl ester of amino acid or peptide (1.5 mmol) in $\mathrm{CHCl_3}$ or $\mathrm{H_2O}$ were added $\mathrm{Et_3N}$ (1.5 mmol) and a solution of 1 mmol of N-hydroxysuccinimide ester of 3 (m=3) in tetrahydrofuran and stirred at room temperature. Usual workup and $\mathrm{SiO_2}$ column chromatography (if necessary) gave the methyl or ethyl ester of the dihydrochalcone derivative. Without further purification the ester was dissolved in 0.5

M NaOH (1 M=1 mol dm⁻³) and stirred for 20 min at room temperature. The solution was acidified by addition of HCl aq and the precipitate was purified by Sephadex LH-20 column chromatography.

Method C: To an ice-cooled solution of 1 mmol of 3 (m=1), amino acid methyl or ethyl ester hydrochloride (1.5 mmol), $\rm Et_3N$ (1.5 mmol), and 1-hydroxybenzotriazole (0.5 mmol) in a mixture of tetrahydrofuran and N,N-dimethyl-formamide was added 1.5 mmol of 1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide hydrochloride. After stirring for 24—48 h at room temperature the reaction mixture was worked up as usual and the product was subjected to alkaline hydrolysis as described in Method B.

Mp's and results of elemental analyses of **5** and **6** are given in Tables 1 and 2. Compounds **5** (n=2 and 3) and **6** (n=2-4) were synthesized with Method A. The following derivatives were prepared by using method B via ethyl ester: **5** (n=1 and 4); **8** (n=2), mp 166—167 °C (Found: C, 59.44; H, 6.32; N, 4.92%. $C_{28}H_{36}O_{10}N_2\cdot \frac{1}{4}H_2O)$; **8** (n=4), mp 131—134 °C. Compound **6** (n=5) was prepared with method B via methyl ester. Method C afforded the following compounds: **7** (n=1) via ethyl ester, mp 198—210 °C decomp (Found: C, 55.92; H, 5.21; N, 2.97%. $C_{20}H_{21}O_9N\cdot \frac{1}{2}H_2O)$; **7** (n=2) via methyl ester, mp 173—180 °C (Found: C, 57.10; H, 5.34; N, 2.91%. $C_{21}H_{23}O_9N\cdot \frac{1}{2}H_2O)$; **7** (n=3) via ethyl ester, mp 240—256 °C decomp (Found: C, 58.08; H, 5.63; N, 3.08%. $C_{22}H_{25}O_9N\cdot \frac{1}{2}H_2O)$; **7** (n=5) via methyl ester, mp 211—212 °C (Found: C, 50.65; H, 6.39; N, 3.01%).

The authors are grateful to Dr. Ukon Nagai of our Institute for helpful discussions and to the members of the Analytical Department of System Engineering Laboratory, Mitsubishi-Kasei Industries, Ltd. for elemental analyses.

References

- 1) R. M. Horowitz and B. Gentili, J. Agric. Food Chem., 17, 696 (1969).
- 2) a) G. E. DuBois, G. A. Crosby, and P. Saffron, *Science*, **195**, 397 (1977); b) G. E. DuBois, G. A. Crosby, R. A. Stephenson, and R. E. Wingard, Jr., *J. Agric. Food Chem.*, **25**, 763 (1977).
- 3) G. E. DuBois, G. A. Crosby, and P. Saffron, Synth. Commun., 7, 49 (1977).
- 4) G. E. DuBois, G. A. Crosby, J. F. Lee, R. A. Stephenson, and P. C. Wang, *J. Agric. Food Chem.*, **29**, 1269 (1981).
- 5) Relative sweetness is given on a molar basis taking sucrose as standard. One-mM solutions containing equimolar amount of NaOH were tested by a taste panel. Each solution was compared with 0.1—0.6 M sucrose solutions.
- 6) A. Leo, C. Hansch, and D. Elkins, *Chem. Rev.*, **71**, 525 (1971).