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Solution- and solid-phase synthesis of novel hydantoin and
isoxazoline-containing heterocycles

Kyung-Ho Park,a Eric Abbate,a Samir Najdi,b† Marilyn M. Olmsteada and Mark J. Kurth*a‡
a Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA 
b Department of Chemistry, Al-Quds University, East Jerusalem, Israel

Exploiting 1,3-dipolar cycloaddition and carbanilide cycli-
zation transformations, novel isoxazolylmethylimidazolidi-
nedione heterocycles have been prepared using both solu-
tion- and solid-phase methods.

The hydantoin moiety has important medicinal1 as well as
agrochemical2,3 activities and a large number of hydantoins
have been synthesized for various biological applications.4
Moreover, the isoxazoline heterocycle has been used ex-
tensively to modulate various other biologically active motifs.5
As part of our efforts toward the preparation and biological
evaluation of novel hydantoin-containing heterocycles, we
disclose here a useful route for the synthesis of isoxazoline-
containing hydantoins6 as well as present a synthetic strategy
applicable to solid-phase combinatorial approaches.

The condensation of glycine ethyl ester HCl salt with
benzophenone imine gave benzophenone Schiff base 17 (5
mmol scale, 95% yield) which was alkylated with allyl bromide
to give protected amino ester 2 (5 mmol scale, 90% yield)
(Scheme 1). Hydrolysis of the imine moiety in 2 with aq. HCl
and subsequent neutralization of the resulting ammonium salt
with aq. NaOH delivered 3 (5 mmol scale, 86%).

The free amine of 3 was reacted with phenyl isocyanate in
CH2Cl2 at ambient temperature for 2 h to give urea 4 in 90%
yield (5 mmol scale) (Scheme 2). 1,3 Dipolar cycloaddition to
the alkene in 4 with a Mukaiyama-generated nitrile oxide8 gave
isoxazoline heterocycle 59 as a C4a and C4b mixture of

Scheme 1 Reagents and conditions: i, HNNCPh2, CH2Cl2, room temp., ii,
allyl bromide, NaH, DMF, room temp.; iii, HCl (1 M); iv, NaOH (1 M)

Scheme 2 Reagents and conditions: i, PhNNCNO, CH2Cl2, room temp.; ii,
RCH2NO2, PhNNCNO, Et3N, THF, 60 °C; iii, NaOEt, EtOH, room temp.

Fig. 1 Crystallographic projection of 6a (R = Ph)

Scheme 3 Reagents and conditions: i, Boc2O, CH2Cl2, reflux; ii, NaOH (1
M); iii, HCl (1 M); iv, KOH; v, 18-crown-6, Merrifield resin, DMF, 70 °C;
vi, TFA, CH2Cl2; vii, Et3N, CH2Cl2; viii, RNNCNO, CH2Cl2, room temp.;
ix, RACH2NO2, PhNNCNO, Et3N, THF, 60 °C; x, Et3N, THF, 60 °C
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diastereomers (4 mmol scale, 5a : 5b : 1 : 1 ratio, yield
60–70%). While separable by flash-column chromatography,
each diastereomer of 5 gave the same mixture of two
diastereomeric isoxazoloimidazolidinediones 6 upon treatment
with NaOEt (1.0 equiv.) in EtOH. Due to this propensity for C2
epimerization during the carbanilide cyclization (5a?6a + 6b
or 5b?6a + 6b; 4 mmol scale; 6a : 6b : 1 : 1; 80% yield), it was
in fact most expedient to effect this transformation on the 5a/5b
mixture. X-Ray crystallographic analysis§ of 6a (R = Ph) (Fig.
1) verified the relative stereochemistries of 5a/5b and 6a/6b.

Our solid-phase approach10 to isoxazolylmethylimidazolidi-
nedione 6 began with amino ester 3, which was Boc-protected
to give 7 (4 mmol scale, 95% yield) (Scheme 3). Saponification
delivered 8 (4 mmol scale, 90% yield) which was coupled with
Merrifield resin to give resin 9.11¶ TFA-mediated removal of
the Boc protecting group followed by a resin wash with Et3N–
CH2Cl2 delivered 10, the solid-phase analog of 3. Paralleling
the solution results, isocyanate treatment of 10 gave urea 11 and
subsequent 1,3-dipolar cycloaddition with a Mukaiyama-
generated nitrile oxide gave 12. A ca. 1 : 1 mixture of
isoxazolylmethylimidazolidinedione diastereomers (6a/6b)
was obtained on cyclative release.

We thank the National Science Foundation and Novartis
Crop Protection AG for financial support of this research.

Notes and References

† Fulbright Fellow, 1996–1997, University of California, Davis, USA.
‡ E-mail: mjkurth@ucdavis.edu
§ Crystal data: for 6a (R = Ph): C19H17N3O3, colorless crystals, M =
335.36, orthorhombic, space group Pbca, a = 9.0062(11), b =
11.1037(10), c = 32.472(3) Å, U = 3247.3(6) Å3, Z = 8, Dc = 1.372 Mg
m23, m = 0.776 mm21, R = 0.0392, wR = 0.0955, GOF = 1.092, T =
130(2) K, F(000) = 1408, 2189 independent reflections were collected on
a Syntex P21 diffractometer using graphite-monochromated Cu-Ka radia-
tion. CCDC 182/917.
¶ Typical procedure for solid-phase isoxazolylmethylimidazolidinedione
synthesis: Boc-protected glycine acid 8 (130 mg, 0.6 mmol) was neutralized
(room temp., 1 h) with KOH (1.0 equiv., 0.6 mmol) in EtOH–H2O (2:1) and,
after removing the solvent and drying in vacuo, the potassium salt was
dissolved in DMF (20 ml) and reacted with Merrifield resin (300 mg, 0.3
mmol; loading ca. 1 mmol Cl g21) and 18-crown-6 (158 mg, 0.6 mmol).
The resulting mixture was stirred at 70 °C for 40 h and then washed with
DMF (20 ml), THF (20 ml), THF–H2O (20 ml3 2), and THF (20 ml). Dried
resin 9 (nmax/cm21 1723) was treated with 50% TFA–CH2Cl2 (20 ml) at
ambient temperature for 1 h, after which time the resin was washed with
CH2Cl2 (20 ml), dioxane (20 ml) and CH2Cl2 (20 ml3 2). An Et3N wash
(10% in CH2Cl2, 20 ml) followed by CH2Cl2 washes (20 ml3 2) gave resin
10 (nmax/cm21 3383, 1735). Phenyl isocyanate (107 mg, 0.9 mmol) in

CH2Cl2 (20 ml) was added and, after 10 h at ambient temperature, the resin
was washed with DMF (20 ml), THF (20 ml) and CH2Cl2 (20 ml) and dried
to give resin 11 (R = Ph; nmax/cm21 1740, 1700, 1662). a-Nitrotoluene
(123 mg, 0.9 mmol), phenyl isocyanate (214 mg, 1.8 mmol) and Et3N (10
µl) were added to this resin in THF (20 ml). After incubating at 60 °C for
20 h, washing the resin with DMF (20 ml), THF (20 ml) and CH2Cl2 (20 ml)
gave resin 12 (R = RA = Ph; nmax/cm21 1738, 1699) which was finally
treated with Et3N (1 ml) in THF (20 ml) at 60 °C for 20 h. Resin was
removed from the liberated product to give 6a/6b (R = RA = Ph) in 35%
overall yield from Merrifield resin. These two isomers were easily separated
by flash chromatography (EtOAc–hexane 1:2) to give 6a (R = RA = Ph; 16
mg, 16% overall yield) and 6b (R = RA = Ph; 19 mg, 19% overall yield).
The optimized solid-phase overall yield of 6a + 6b is 35%, which translates
to ca. 84% yield per step from 8. With catalytic Et3N, we saw no evidence
for formation of 6 in 11?12.
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