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Abstract 

Synthesis of  three generations of  model substrates with advancing similarity to chatancin are presented. In the 

first two generations, an Ireland-Ciaisen based six-step sequence supplied the trans-dienophile to be connected 

by dithiane chemistry to furfurals. In the third generation, a homogeraniol based dienophile aldehyde was 

coupled with a dilithiated 3-furoic acid. Subsequently, all three generations were concluded with similar 

functional group modifications as a preparation for a malonate-furyl chloride based macrocyclization. 

© 1999 Elsevier Science Ltd. All rights reserved. 
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Intramolecular reactions are a well documented subdivision of furan Diels-Alder chemistry [ 1]. 

However, only two examples are reported where the dienophile is tethered to both sides of the 
furan to form a macrocycle and lock the system into an ideal conformation [2,3]. Recently, as a 
part of our ongoing research on transannular Diels-Alder (TADA) reactions [4], we had initiated 
a project involving furanophanes, macrocycles with a furan as a diene segment, towards the total 
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synthesis of chatancin (1), a PAF antagonist isolated from a soit coral Sarcophyton sp.[5]. 

Diterpene 1 is in principle available via a hydride shiit mediated oxygen transposition on TADA 

product 2 deriving from furanophane 3 (Scheme 1). Since furanophane 3 has all the attributes of 

a furanocembranoid [6], this strategy may mimic the biogenesis of diterpene I [7]. 

In this two-part series, we wish to report on the evolution of three generations of model studies 

investigating the influence of advancing complexity of furanophane substrates on the TADA 

reaction. In Part 1, we describe the synthesis of these model substrates, while in Part 2 [8], the 

results of macrocyclizations and the TADA reactions are summarized [9,10]. 

The assembly of the substrates followed the traditional highly convergent route developed in 

our laboratory [4]. For the first two generations, the requisite trans-dienoplfile was synthesized in 

six steps (Scheme 2). Thus, Swern oxidation [11] ofmonoprotected propanediol 4 [12] afforded 
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Scheme 2: (a) DMSO, (COCl)2, CH2Cl2, -78°C then Et3N, 95%; (b) IsopropenyI-MgBr, Et20, 80%; (c) CH3CH(OCH3)3, 
PrCOOH (cat.), 140°C, 80%; (d) DIBALH, CH2CI2, 95%; (e) CH2(CH2SH)2, BF3Et20, CH2Cl2, 80%. 

aldehyde 5, a substrate for chain extension and selective double bond formation. Grignard 

reaction on 5 followed by Ireland-Claisen rearrangement [13] on allylic alcohol 6 gave ester 7 

which was reduced to aldehyde 8 and transformed to dithiane 9. This dienophile was then 

connected to furfitral 10 or 11 [14] via dithiane chemistry [15]. The synthesis was concluded by 

certain functional group modifications as a preparation for the malonate based macrocyclization 

(Scheme 3). Thus, complete deprotonation of dithiane 9 was observed with 2 eq. of BuLi at 0°C 

to 23°C in 30 rain and the anion was stable at -78°C. In the first generation, a good yield of 

coupling product 12 was obtained with furfural 10 within an hour at -78°C. Sequential protection 

to benzylether 13, desilylation to alcohol 14, its activation as mesylate 15 then a coupling with 

the connector [16] afforded malonate 16 without difficulty to fix this terminus for the 

macrocyclization. Cleavage of THP-ether to alcohol 17 and activation as chloride 18 [17] 

completed the other terminus [1]. 

Assembly of the second generation substrate resembled that of above with a difference of the 

application of the more practical MOM and Bz protections instead of Tiff' and Bn, respectively. 

Although only 25% yield of coupling product 19 could be achieved even with 1.6 eq. of BuLi, 1.3 

eq. of furfural 11 and 10 min reaction time as optimum condition, the rest of the synthesis was 

again without difficulty to afford furyl chloride 25 [18] in six steps fi'om alcohol 19 [1]. 
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Generation 1: (a) 2.0 eq. BuLi at 23°C then 10 at 
-78°C, THF, 80%; (b) Nail, BnBr, THF, 82%; (c) 
TBAF, THF, 93%; (d) Et3N, MsCI, CH2CI2; (e) 
NaCHE2, KI, THF/DMF, 70°C, 88% over 2 steps; 
(f) PTSA, MeOH, 93% (g) MsCI, LiCI, DMF, 95%. 

Generation 2: (a) 1.6 eq. BuLi at 23°C then 11 at - 
78°C, THF, 25%; (b) BzCI, Py, CH2Cl2, 92%; (c) 
TBAF, THF, 89%; (d) Et3N, MsCI, CH2CI2; (e) 
NaCHE2, KI, THF/DMF 70°C, 98% over 2 steps; (f) 
HCI, MeOH, 83% (g) HCA, PPh3, CH2CI2, 93%. 

Scheme 3 

For the third generation, the dienophile was prepared ~om homogeranyl pivalate 26 [19] 
(Scheme 4). Thus selective Prms reaction [20] afforded homoallylic alcohol 27. Re~oselective 
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Generation 3: (a) (CH20)n, Me2AICI, CH2CI2, 90%; (b) H2, RhCl (PPh3)3, Phil, 94%; (c) TPAP, NMO, CH2CI2, 86%; 
(d) 30, THF, then H* then CH2N2, 63%; (e) TBDMSOTf, lutidine, CH2C12, 92%; (f) MeO, MeOH; (g) MsCI, Py, CH2CI2; 
(h) NaCHE2, KI, THF/DMF, 70°C, 84% over 3 steps; (i) PTSA, MeOH; (j) HCA, PPh3, CH2CI2, 63% over 2 steps. 

Scheme 4 
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hydrogenation [21 ] of  the terminal double bond with Wilkinson catalyst gave alcohol 28 followed 
by an oxidation [22] to aldehyde 29 completed the dienophile. Its coupling [23] with dilithio 3- 
furoate 30 [24] and esterification with diazomethane furnished alcohol 31 in 63% yield with an 
anti/syn ratio of 2:1. Following a chromatographic separation, the anti-isomer was protected as 
silyl ether 32. Conclusion of the synthesis paralleled that of the former model substrates after 
cleavage of the pivalate ester in 32: connector coupling [16] afforded malonate 33 then 
transformation of THP-ether to furyl chloride [ 18] supplied the third model substrate 34 [ 10]. 

Having acquired three acyclic monosubstituted malonates with terminal furyl chlorides (18, 25 
and 34), now we are ready for macrocyclization and the TADA studies as described in the 
following communication [8]. 
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