

Visible-light photoredox catalysis enabled bromination of phenols and alkenes

Yating Zhao, Zhe Li, Chao Yang, Run Lin and Wujiong Xia*

Full Research Paper	Open Access		
Address:	Beilstein J. Org. Chem. 2014, 10, 622–627.		
State Key Lab of Urban Water Resource and Environment, The Academy of Fundamental and Interdisciplinary Sciences, Harbin	doi:10.3762/bjoc.10.53		
Institute of Technology, Harbin 150080, China	Received: 21 November 2013		
	Accepted: 03 February 2014		
Email:	Published: 07 March 2014		
Wujiong Xia [*] - xiawj@hit.edu.cn			
	This article is part of the Thematic Series "Organic synthesis using		
* Corresponding author	photoredox catalysis".		
Keywords:	Guest Editor: A. G. Griesbeck		
alkenes; bromination; phenols; photoredox catalyst; visible light			
	© 2014 Zhao et al; licensee Beilstein-Institut.		
	License and terms: see end of document.		

Abstract

A mild and efficient methodology for the bromination of phenols and alkenes has been developed utilizing visible light-induced photoredox catalysis. The bromine was generated in situ from the oxidation of Br^- by $Ru(bpy)_3^{3+}$, both of which resulted from the oxidative quenching process.

Introduction

Bromophenols serve as important synthetic intermediates for a variety of naturally occurring biologically active compounds and are also important constituents of industrial chemicals [1-5]. Thus, numerous methods were developed for the electrophilic bromination of phenols. The typical approaches include direct electrophilic halogenation by using molecular bromine or *N*-bromosuccinimide (NBS) [6-8], organometallic catalyst-promoted bromination [9-12], and the oxidative bromination of phenols [13-15]. Nevertheless, most of the methods suffer from several drawbacks such as toxic reagents, harsh conditions, low yields, and low chemo- and regioselectivity. Hence, the development of an environmentally friendly methodology for the bromination of phenols with high chemoselectivity under mild and operationally simple conditions is still appealing.

Recently, an intriguing and promising strategy for the application of photoredox catalysts to initiate single electron transfer processes have been developed [16-22]. Since the pioneering work from the groups of MacMillan [23-25], Stephenson [26-28], Yoon [29-31] and others [32-44] demonstrated the usefulness of Ru(bpy)₃Cl₂ and its application to various visible-lightinduced synthetic transformations, visible-light-photoredox catalysis has emerged as a growing field in organic chemistry and has been successfully applied in a variety of reactions. In the oxidative quenching process [45-47], Ru(bpy)₃²⁺ excited by visible light generates Ru(bpy)₃^{2+*}, which was oxidized to Ru(bpy)₃³⁺ in the presence of oxidative quenchers. CBr₄ is an example of a suitable oxidative quencher and leads to the formation of Br⁻ and •CBr₃. We envision that Ru(bpy)₃³⁺ is a strong oxidant (1.29 V vs SCE, in CH_3CN) that could sequentially oxidize the resulting Br^- (1.087 V vs SCE, in CH_3CN) to generate the bromine for the bromination of phenols and other substrates in situ (Scheme 1), thus avoiding the use of highly toxic and volatile liquid bromine.

Results and Discussion

Our initial investigation was carried out on protected 4-methoxyphenol 1a and CBr₄ in dried CH₃CN in the presence of Ru(bpy)₃Cl₂ (5.0 mol %) with visible light irradiation (blue LEDs, $\lambda_{max} = 435$ nm) for 6 hours. The corresponding 2-bromo-4-methoxyphenol (2a) was obtained in 78% yield (Table 1, entry 1), whereas 3-bromo-4-methoxyphenol was not observed. The optimization of the reaction conditions were conducted by screening selected solvents and the amount of the photoredox catalyst using 1a as the representative substrate. As can be seen in Table 1, the solvent had a significant effect on the reaction efficiency. The reaction did not work well in DMF, MeOH, THF, CH₂Cl₂, EtOAc, CH₃CN with 10 equivalents of H₂O or 1,4-dioxane (Table 1, entries 5-11). The reaction in CH₃CN and open to air led to the highest yield, 94% (Table 1, entry 4), whereas the reaction conducted under N₂ or O₂, or in DMSO and open to air gave lower yields (Table 1, entries 2, 3, 12). Our final optimization showed that the reaction also provided comparable results when the catalyst loading was reduced to 3% or 1% (Table 1, entry 13). It should be pointed out that an exclusion of either the photocatalyst or the light source did not afford the desired product 2a. Therefore, the reaction conditions of CBr₄ (1 equiv) in dried CH₃CN in the presence of Ru(bpy)₃Cl₂ (5.0 mol %) with visible light irradiation (blue LEDs, $\lambda_{max} = 435$ nm) and open to air were utilized to test the scope of the reaction.

With the optimized conditions in hand, we prepared a variety of phenols which were subjected to the photocatalytic reaction. In general, both electron-withdrawing and electron-donating

OMe	OMe Ru(bpy) ₂ Cl ₂ (5 mol %)	
OTM	CBr ₄ (1 equiv), 1 W LEDs dried solvent, rt, 6 h OH	+ HCBr ₃ Br
1a	2a	
entry	conditions ^a	yield (%) ^b
1	CH ₃ CN, tube closed	78
2	CH ₃ CN, N ₂	89
3	CH ₃ CN, O ₂	46
4	CH ₃ CN, open to air	94
5	CH ₃ OH, open to air	23
6	CH ₂ Cl ₂ , open to air	0
7	DMF, open to air	63
8	THF, open to air	0
9	EtOAc, open to air	0
10	1,4-dioxane, open to air	0
11	CH ₃ CN + 10 equiv H ₂ O, open to air	0
12	DMSO, open to air	82
13	CH ₃ CN, Ru(bpy) ₃ Cl ₂ (3%), open to air	86

 $Ru(bpy)_3Cl_2$ (5 mol %), solvent (0.1 M), blue LEDs (1W). ^bYields were determined by GC analysis.

groups were tolerated as substituents R² in this process. Interestingly, the substrates protected with TMS (trimethylsilyl), TBS (tert-butyldimethylsilyl), MOM (methoxymethyl) and THP (tetrahydropyranyl) groups led to the corresponding bromophenols via a Tandem bromination/deprotection reaction (Table 2, entries 1-8, 12, 13, and 15), among which the cases with substituents at para- and ortho-position afforded 2- and 4-bromophenol, respectively, in good to excellent yields (Table 2, entries 1-5 and 12). The compound substituted with a methoxy group at the meta-position (1b) led to both 2- and 4-bromophenols 2b and 2b' with a ratio of 2:1 (Table 2, entry 8). Without any substituent at the phenol moiety mono- and dibromophenols were obtained with a ratio of 3:2 (Table 2, entries 6 and 7). Notably, 1-bromonaphthalen-2-ol and 1-bromo-2-methoxynaphthalene could be prepared in good yields with high regioselectivity from TMS and methyl protected naphthalen-2-ol (Table 2, entries 13 and 14). The direct treatment of 3-methoxyphenol under the same reaction conditions afforded 2- and 4-bromo-3-methoxyphenol with a ratio of 3:2 in a synthetically acceptable yield (Table 2, entry 11). Phenols protected with Bn or Ms groups led to 2- and 4-bromophenol derivatives in excellent yields without the loss of Bn or Ms groups (Table 2, entries 9 and 10).

 Table 1: Survey of the photocatalytic bromination reaction conditions.

(5 mol %), dried CH₃CN, blue LEDs (1 W), open to air. ^cRatio of the isomers in parentheses.

The bromination of phenols could be controlled by the amount of CBr₄. For example, when TMS protected 3-methoxyphenol was treated with 2 equivalents of CBr₄ under similar conditions (Table 2), a dibromophenol product was directly obtained in a high yield (95%) (Scheme 2), which also could be prepared from the same starting materials in two steps (Table 2).

We also conducted a control experiment by reacting stilbene with CBr₄ (1 equiv) in dry CH₃CN in the presence of Ru(bpy)₃Cl₂ (5.0 mol %) with visible-light irradiation (blue LEDs, $\lambda_{max} = 435$ nm) for 72 hours, which led to the *anti*-1,2-dibromo-1,2-diphenylethane in 92% yield. This result is in accordance with the direct bromination of stilbene from liquid bromine [47]. Based on this result, our protocol provides an easily manageable and environment-friendly pathway to the bromination of alkenes. We further examined the scope of the reaction, and the results are summarized in Scheme 3. The 1,2-dibromo products were obtained in moderate to high yields. With the success of the bromination of phenols and alkenes, we further focused on the complementary bromination of diketones and cyclization reactions. The treatment of cyclohexane-1,3-dione (5) and (*E*)-4-(4-methoxyphenyl)but-3-en-1-ol (7) under the same reaction conditions led to 2,2-dibromocyclohexane-1,3-dione (6) and bromofuran compound 8 in 22% and 52% yield, respectively (Scheme 4). This outcome demonstrates the efficiency of the Ru(bpy)₃Cl₂/CBr₄ photocatalytic system. The stereochemistry of the bromofuran compound was determined by 2D NMR spectra.

Conclusion

In summary, we have developed a mild and operationally simple method for the in situ preparation of bromine utilizing a visible-light photoredox catalyst. The reaction proceeds with high chemical yield and regioselectivity for the bromination of phenols and alkenes. Further development of photoredox catalysis in the context of radical chemistry and its application in other reactions are currently underway in our laboratory.

Experimental General procedure for the bromination of phenols and alkenes

To a 10 mL round bottom flask equipped with a magnetic stir bar were added phenols or alkenes (0.1 mmol), CBr_4 (33 mg, 0.1 mmol), dry CH₃CN (1 mL) and Ru(bpy)₃Cl₂ (3.8 mg, 0.005 mmol). The mixture was irradiated with blue LEDs (1 W) at room temperature open to air until the starting material disappeared completely (monitored by TLC). After the reaction was completed, the solvent was concentrated in vacuo. The residue was purified by flash column chromatography to give the final product.

To a 10 mL round bottom flask equipped with a magnetic stir bar were added **5** (0.4 mmol), CBr₄ (133 mg, 0.4 mmol), dry CH₃CN (2 mL) and Ru(bpy)₃Cl₂ (15 mg, 0.02 mmol). The mixture was irradiated with blue LEDs (1 W) at room temperature open to air until the starting material was largely consumed (monitored by TLC). After the reaction was completed the solvent was concentrated in vacuo. The residue was purified by flash column chromatography to give the final product **6**.

To a 10 mL round bottom flask equipped with a magnetic stir bar were added 7 (0.13 mmol), CBr₄ (43 mg, 0.13 mmol), LiBr (11 mg, 0.13 mmol), dry CH₃CN (1 mL) and Ru(bpy)₃Cl₂ (4.5 mg, 0.006 mmol). The mixture was irradiated with blue LEDs (1 W) at room temperature open to air until the starting material disappeared completely (monitored by TLC). After the reaction was completed the solvent was concentrated in vacuo. The residue was purified by flash column chromatography to give the final product **8**.

Supporting Information

Supporting Information File 1

¹H and ¹³C NMR spectra for products. [http://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-10-53-S1.pdf]

Acknowledgements

We are grateful for the financial supports from China NSFC (Nos. 21272047 and 21372055), SKLUWRE (No. 2012DX10), the Fundamental Research Funds for the Central Universities (Grant No. HIT.BRETIV.201310), and ZJNSF (No. LY12B02009).

References

- Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937–1944. doi:10.1021/cr00021a014
- 2. Heck, R. F. Org. React. 1982, 27, 345-390

- Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508–524. doi:10.1002/anie.198605081
- Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483. doi:10.1021/cr00039a007
- Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450–1460. doi:10.1021/ar8000298
- Mitchell, R. H.; Lai, Y.-H.; Williams, R. V. J. Org. Chem. 1979, 44, 4733–4735. doi:10.1021/jo00393a066
- Carreno, M. C.; Garcia Ruano, J. L.; Sanz, G.; Toledo, M. A.; Urbano, A. J. Org. Chem. **1995**, 60, 5328–5331. doi:10.1021/jo00121a064
- Park, M. Y.; Yang, S. G.; Jadhav, V.; Kim, Y. H. *Tetrahedron Lett.* 2004, 45, 4887–4890. doi:10.1016/j.tetlet.2004.04.112
- Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416–7417. doi:10.1021/ja060232j
- 10. Song, B.; Zheng, X.; Mo, J.; Xu, B. *Adv. Synth. Catal.* **2010**, *352*, 329–335. doi:10.1002/adsc.200900778
- 11. Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. *Angew. Chem., Int. Ed.* **2008**, 47, 5215–5219. doi:10.1002/anie.200705613
- 12. Castro, C. E.; Gaughan, E. J.; Owsley, D. C. *J. Org. Chem.* **1965**, *30*, 587–592. doi:10.1021/jo01013a069
- Bora, U.; Bose, G.; Chaudhuri, M. K.; Dhar, S. S.; Gopinath, R.; Khan, A. T.; Patel, B. K. *Org. Lett.* **2000**, *2*, 247–249. doi:10.1021/ol9902935
- Narender, N.; Mohan, K. V. V. K.; Reddy, R. V.; Srinivasu, P.; Kulkarni, S. J.; Raghavan, K. V. J. Mol. Catal. A: Chem. 2003, 192, 73–77. doi:10.1016/S1381-1169(02)00131-0
- 15. Adibi, H.; Hajipour, A. R.; Hashemi, M. *Tetrahedron Lett.* **2007**, *48*, 1255–1259. doi:10.1016/j.tetlet.2006.12.033
- Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527–532. doi:10.1038/nchem.687
- Inagaki, A.; Akita, M. Coord. Chem. Rev. 2010, 254, 1220–1239. doi:10.1016/j.ccr.2009.11.003
- Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102–113. doi:10.1039/b913880n
- Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828–6838. doi:10.1002/anie.201200223
- 20. Shi, L.; Xia, W. *Chem. Soc. Rev.* **2012**, *41*, 7687–7697. doi:10.1039/c2cs35203f
- 21. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. *Chem. Rev.* **2013**, *113*, 5322–5363. doi:10.1021/cr300503r
- 22. Tucker, J. W.; Stephenson, C. R. J. *J. Org. Chem.* **2012,** *77*, 1617–1622. doi:10.1021/jo202538x
- 23. McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334, 1114–1117. doi:10.1126/science.1213920
- Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77–80. doi:10.1126/science.1161976
- Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224–228. doi:10.1038/nature10647
- Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464–1465. doi:10.1021/ja909145y
- 27. Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756–8757. doi:10.1021/ja9033582
- 28. Dai, C.; Narayanam, J. M. R.; Stephenson, C. R. J. *Nat. Chem.* **2011**, 3, 140–145. doi:10.1038/nchem.949
- Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572–8574. doi:10.1021/ja103934y
- Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886–12887. doi:10.1021/ja805387f

- Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 14604–14605. doi:10.1021/ja903732v
- 32. Tucker, J. W.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 368–371. doi:10.1021/ol902703k
- 33. Furst, L.; Matsuura, B. S.; Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 3104–3107. doi:10.1021/ol101146f
- 34. Maji, T.; Karmakar, A.; Reiser, O. J. Org. Chem. 2011, 76, 736–739. doi:10.1021/jo102239x
- 35. Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 1162–1164. doi:10.1021/ja107849y
- 36. Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W. Chem. Commun. **2012**, *48*, 2337–2339. doi:10.1039/c2cc17130a
- 37. Sun, H.; Yang, C.; Gao, F.; Li, Z.; Xia, W. Org. Lett. 2013, 15, 624–627. doi:10.1021/ol303437m
- 38. Zhu, S.; Das, A.; Bui, L.; Zhou, H.; Curran, D. P.; Rueping, M. J. Am. Chem. Soc. 2013, 135, 1823–1829. doi:10.1021/ja309580a
- 39. Xie, J.; Xue, Q.; Jin, H.; Li, J.; Cheng, Y.; Zhu, C. Chem. Sci. 2013, 4, 1281–1286. doi:10.1039/c2sc22131d
- 40. Liu, Q.; Li, Y.-N.; Zhang, H.-H.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem.-Eur. J. **2012**, *18*, 620–627. doi:10.1002/chem.201102299
- 41. Chen, M.; Huang, Z.-T.; Zheng, Q.-Y. Chem. Commun. 2012, 48, 11686–11688. doi:10.1039/c2cc36866h
- 42. Cai, S.; Zhao, X.; Wang, X.; Liu, Q.; Li, Z.; Wang, D. Z. Angew. Chem., Int. Ed. 2012, 51, 8050–8053. doi:10.1002/anie.201202880
- 43. Zou, Y.-Q.; Lu, L.-Q.; Fu, L.; Chang, N.-J.; Rong, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2011, 50, 7171–7175. doi:10.1002/anie.201102306
- 44. Shih, H.-W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 13600–13603. doi:10.1021/ja106593m
- Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. *J. Am. Chem. Soc.* 2011, *133*, 4160–4163. doi:10.1021/ja108560e
- Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875–8884. doi:10.1021/ja300798k
- 47. Ma, K.; Li, S.; Weiss, R. G. Org. Lett. 2008, 10, 4155–4158. doi:10.1021/ol801327n

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License

(<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.10.53