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Abstract—A method for the preparation of S-aryl thioacetates using palladium-mediated couplings of aryl bromides and aryl tri-
flates with potassium thioacetate as an inexpensive thiol source was developed. Electron withdrawing groups, electron donating
groups and heterocyclic substrates were tolerated in the reaction conditions, affording the corresponding products in good to excel-
lent yields. This method was applied to the preparation of novel sulfone-containing DPP-IV inhibitors.
� 2007 Elsevier Ltd. All rights reserved.
Compounds that possess arylsulfur-containing func-
tional groups have found use in multiple applications,
including those in biological, pharmaceutical and mate-
rials areas.1 Accordingly, methods to construct the aryl–
sulfur bond are of high utility. In spite of this, relatively
few efficient and general methods to prepare versatile
arylthiol equivalents from readily available starting
materials have been developed. Classical preparations
generally feature the trapping of metalated aryl groups
with elemental sulfur to afford arylthiols.2 However,
these transformations cannot be applied for those aryl
substrates bearing sensitive functionalities such as alde-
hyde, ketone and ester groups. More modern procedures
utilize specialized sulfur reagents that can be coupled
with aryl halides to afford stable intermediates. A second
step is used to reveal the arylthiol functionality.3 For
example, iso-octyl-3-mercaptopropionate3e and 2-(4-
pyridyl)ethanethiol3f can be coupled to aryl bromides
to furnish intermediates that are susceptible to b-elimi-
nation. Treatment with sodium tert-butoxide then gives
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Scheme 1. Preparation of versatile S-aryl thioacetates.
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the corresponding arylthiol products.3h While effective,
these specialized sulfur reagents are not simple and
low cost thiol sources. We reasoned that the coupling
of inexpensive thioacetic acid with aryl halides would
be a powerful alternative to form the aryl–sulfur bond
(Scheme 1).4 The resulting S-aryl thioacetates are versa-
tile intermediates from which a number of sulfur-con-
taining functional groups including arylthiols (ArSH),5

aryl sulfenyl chlorides (ArSCl),6 aryl sulfinyl chlorides
(ArSOCl)7 and aryl alkyl sulfides (ArSR)8 can be
accessed in a straightforward manner. Here, we report a
general Pd-catalyzed coupling of aryl bromides/triflates
with inexpensive potassium thioacetate to give S-aryl
thioacetates under microwave conditions (Scheme 1).

We used the catalyst system (Pd2(dba)3–Xantphos)
reported by Ioth and Mase3h as a starting point to
investigate the coupling efficiency of bromobenzene with
potassium thioacetate (Table 1). Under refluxing condi-
tions with 1,4-dioxane as solvent (100 �C), we were
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Table 1. Evaluation of reaction conditions for the formation of S-phenyl thioacetate

S Me

O
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Br +

O

Me S-K+

Entry Conditionsa Yieldb (%)

1 Pd2(dba)3, Xantphos, i-Pr2NEt, 1,4-dioxane, 100 �C, 1d 30
2 Pd2(dba)3, Xantphos, i-Pr2NEt, diglyme, 150 �C, 1d nd
3 Pd2(dba)3, Xantphos, i-Pr2NEt, DMF, 150 �C, 1d nd
4 Pd2(dba)3, Xantphos, i-Pr2NEt, NMP, 150 �C, 1d nd
5 Pd2(dba)3, Xantphos, i-Pr2NEt, 1,4-dioxane, microwave, 160 �C, 25 min 89
6 1,4-Dioxane, microwave, 160 �C, 25 min nd
7 Pd2(dba)3, i-Pr2NEt, 1,4-dioxane, microwave, 160 �C, 25 min nd
8 Pd2(dba)3, Xantphos, 1,4-dioxane, microwave, 160 �C, 25 min 5

a Reactions were performed using 2.5 mol % catalyst, 5 mol % ligand, 1.5 equiv of potassium thioacetate, 2.0 equiv of Hunig’s base and 3.6 mL of
solvent with 1.0 mmol of bromobenzene.

b Isolated yield.
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pleased to observe partial conversion to give S-phenyl
thioacetate (30%) (entry 1). This result was encouraging
and we reasoned that the conversion could be increased
through better dissolution of potassium thioacetate. To
this end, various aprotic solvents and reaction tempera-
tures were screened. Diglyme at 150 �C gave no detect-
Table 2. Pd-catalyzed coupling of aryl bromides/triflates potassium thioacet
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able amount of the desired product (entry 2). Similarly
poor results were observed for DMF and NMP (entries
3, 4). However, the subjection of the reaction mixture to
microwave heating at 160 �C with 1,4-dioxane as solvent
afforded the desired product in an excellent yield (entry
5, 89%).
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Table 2 (continued)

Entry ArX Product Yielda (%)
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a Isolated yield.
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In order to investigate the requirements of the transfor-
mation, we performed reactions in the absence of
Pd2(dba)3–Xantphos and Hunig’s base (entry 6), ligand
Xantphos (entry 7), or Hunig’s base (entry 8). None of
these reaction conditions were effective. Finally, it
should be noted that the use of thioacetic acid, rather
than potassium thioacetate, employing our best condi-
tions (Pd2(dba)3, Xantphos, i-Pr2NEt, 1,4-dioxane,
microwave, 160 �C, 25 min) did not yield any product.

With the optimized reaction conditions in hand, we then
explored the scope of the transformation by coupling
various functionalized aryl bromides and aryl triflates
with potassium thioacetate (Table 2).9 Sterically hin-
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Scheme 2. Reagents and conditions (a) CH3CN, 80 �C, 0.5 h, 83%; (b) CH3C
25 min, 87%; (c) CH3I, NaOH (1 N), EtOH, 0 �C, 1 h; (d) m-CPBA, CH2Cl
dered ortho-bromotoluene provided the correspond-
ing product in good yield (entry 2). Electron rich
3,4-dimethoxybromobenzene coupled with moderate
efficiency (entry 3, 51%), while the electron poor hetero-
cycle 3-bromopyridine gave a good yield of thioacetate
product (entry 4, 85%). Common functional groups
such as N-Boc carbamates, ketones and ethyl esters
proved to be well-tolerated under our reaction condi-
tions, as exemplified by entries 5, 7 and 8. However,
both N-Cbz carbamate (entry 6) and nitro-containing
substrates (entry 9) provided no reaction products due
to either cross-reaction of these functionalities with
potassium thioacetate or decomposition. In addition,
the protocol can be applied with aryl triflates (entry
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OSK, Pd2(dba)3, Xantphos, i-Pr2NEt, 1,4-dioxane, microwave, 160 �C,

2, rt, 50 min; (e) HCl/1,4-dioxane (4 N), rt, 2 h, (84%—three steps).
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10, 91%). Aryl chlorides did not couple under these con-
ditions, thus defining the limits of reactivity (entry 11).

These methods were applied to the development of pyr-
rolidine-constrained phenethylamine DPP-IV inhibitors
such as 1.10 A flexible and efficient synthesis of com-
pound 1 is shown in Scheme 2.11 Briefly, pyrrolidine
210 was treated with bromo-substituted triazine chloride
312 to provide 4 in high yield (83%). This efficient trans-
formation proceeded with quaternization of the amine
followed by debenzylation.13 Compound 4 was then
coupled with potassium thioacetate under our optimized
reaction conditions to form key intermediate 5 in 87%
yield. Compound 5 was cleanly converted to the corre-
sponding methyl sulfide via one-pot deacylation/alkyl-
ation with MeI.8 Finally, oxidation of the methyl
sulfide with m-chloroperoxybenzoic acid followed by a
deprotection step provided the desired product 1 in high
yield (84% from 5).

In summary, we have developed an efficient and func-
tional group compatible method for the formation of
aryl–sulfur bonds through the coupling of aryl bromides
and aryl triflates with an inexpensive thiol source. The
S-aryl thioacetate products that this method provides
are versatile intermediates for the preparation of a range
of sulfur-containing functional groups. We have applied
these methods to the synthesis of DPP-IV inhibitors that
contain sensitive functionality. Further improvement
and applications of this protocol will be reported in
due course.
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