

Bioorganic & Medicinal Chemistry 6 (1998) 2075–2083

In Search of Novel Water Soluble Forskolin Analogues for Positive Inotropic Activity

Bansi Lal,^a* Ashok Kumar Gangopadhyay,^a Ramesh M. Gidwani,^a Magno Fernandes,^a Ramanujam Rajagopalan^{b,c} and Anil Vasantrao Ghate^b

^aDepartment of Chemistry, Research Centre, Hoechst Marion Roussel Limited, Mulund (W), Mumbai 400 080, India ^bDepartment of Pharmacology, Research Centre, Hoechst Marion Roussel Limited, Mulund (W), Mumbai 400 080, India ^cDepartment of Pharmacology, Dr. Reddy's Research Foundation, Bollaram Road, Miyapur, Hyderabad 500 138, India

Received 24 March 1998; accepted 16 June 1998

Abstract—Using the novel lead from hydroxy acetyl substituted forskolin analogues, such as 7β -hydroxyacetyl- 7β -deacetyl forskolin or 6β -hydroxyacetyl forskolin, a number of water soluble ω -amino acyl derivatives were synthesized. Two such compounds **6** and **18** showed better in vitro activity but failed to show in vivo activity. \bigcirc 1998 Elsevier Science Ltd. All rights reserved.

Introduction

Forskolin was isolated from *Coleus forskolii*.¹ It showed excellent pharmacological properties such as positive inotropic, antihypertensive, blood pressure lowering, intraoccular pressure lowering, adenylate cyclase activation etc.²

One of the major disadvantages for which forskolin as such had not been developed subsequently, was its water insolubility. Subsequent effort was made by others to synthesize water soluble forskolin analogues through introduction of ω -amino acyl chain at 6 β - or 7 β -positions. Some of these derivatives showed interesting pharmacological activity.^{3a,3b} One such compound NKH-477 is now under clinical development.^{3b} In our earlier publication⁴ we have shown that by introducing a 'spacer' in the form of hydroxy acyl chain in 6 β - or 7 β position of deacetyl forskolin or 6 β -position of forskolin retains the biological activity to large extent (Fig. 1). Moreover the introduction of acyl chain on primary –OH group of the extended chain could be achieved in a regioselective manner and the resulting derivatives, particularly in 7β -position improved positive inotropic activity (as shown in Figure 1).

Since we were involved in developing forskolin analogues with better positive inotropic activity preferably with water solubility, the above information prompted us to undertake a synthetic project to introduce amino acyl chain to get water soluble forskolin analogues.

In this paper we would like to report the synthesis and biological activities of such an effort on two forskolin derivatives such as **A** and **B**.

Results and Discussion

Chemistry

Our initial target molecule involved the replacement of $-COCH_3$ (in C or D)⁴ by COCH₂NR₂ group and solubilize by making appropriate salt. An appropriate intermediate was chosen depending upon the type of substituent to be introduced. When R = H (glycine residue) or homologous ω -amino acyl chain to be introduced, the corresponding protected amino acid was used. While the preferred approach for the introduction of secondary amine could be the nucleophilic substitution reaction on $-COCH_2Cl$ intermediate or Michael addition across the conjugated double bond (such as

Key words: Forskolin; 2-hydroxy acetyl; ω-aminoacyl; positive inotropic activity.

^{*}Corresponding author. Tel: 0091 22 564 0748; Fax: 0091 22 564 1953; e-mail: bansilal@hoechstres.rpgms.ems.vsnl.net.in

<u>A</u>; R = H ; EC₅₀= 1.0 μ g/ml <u>C</u>; R = COCH₃ ; EC₅₀= 0.008 μ g/ml

 $-COCH = CH_2$). Protecting groups that are acid labile (under mild condition) being chosen for amino group protection keeping in mind the presence of olefin double bond for which hydrogenolizable groups are unsuitable. Using this basic approach the synthetic strategy was adopted.

Thus Boc-Gly⁵ was reacted with 7β-hydroxyacetoxy-7β-deacetyl forskolin (A) in presence of DCC and DMAP to give compound 1 (Scheme 1). All attempt to remove the Boc- group even under mild condition such as formic acid-anisole⁶ was unsuccessful leading to a bad mixture. At this stage we decided to use trityl group as N-protection. The required intermediate 2 could be obtained in a similar fashion by reacting 1 with Trit-Gly⁷ in presence of DCC-DMAP. In this case also the removal Trit- group by 85% AcOH⁸ could not provide clean reaction. However, when the reaction was carried out with TFA under dilution (TFA:ether = 1:50 v/v), a clean reaction occurred. The desired product 3 being isolated from the reaction mixture directly as hydrochloride salt since solvent could not be removed in presence of TFA as it causes complete decomposition of the product. Introduction of disubstituted glycyl residue on primary OH group was quite straightforward. Chloroacetic acid was reacted with A in presence of DCC and DMAP to get chloroacetyl derivative 4 in high yield. It was then reacted with the desired secondary amine in dichloromethane at room temperature to yield disubstituted glycyl analogues 6 and 9-13. However the yields were not very good ($\sim 40-60\%$), because of partial hydrolysis of chloroacetyl group. In some instances formation of product corresponding to the migration of the complete chain from 7β to 6β position, which can easily be seen by the downfield shift of 6H proton (triplet) and upfield shift of 7H doublet in ¹H NMR. Diisopropyl amine and trimethoxy aniline failed to react at room temperature. However when 4 was reacted with diisopropyl amine at 45°C and trimethoxy aniline at 70–80 °C desired compounds 7 and 8 could be formed in 40% and 20% yields respectively.

<u>B</u>; R = H; $EC_{50} = 0.72 \mu g/ml$ **<u>D</u>**; $R = COCH_3$; inactive.

Further we decided to introduce higher homologue of amino acyl chain at 7β -OCOCH₂OH residue. This had been done by converting primary OH group of **A** to acrylic acid ester followed by Michael addition across the double bond with different amines. Therefore when **A** had reacted with acrylic acid in presence of DCC-DMAP the reaction had found to be very slow, most of the starting material remained intact in spite of using large excess of acrylic acid, DCC and DMAP. A small amount of product formed in the reaction had found to be a bad mixture. An alternative approach was adopted for the synthesis of disubstituted propanoyl analogue. As a representative example 3,3-diamino propionic acid was reacted with **A** in presence of DCC-DMAP to yield compound **5**.

A similar series of steps could be performed on 6β -hydroxy acetyl-7-deacetyl forskolin **B** to generate compounds **14** to **21** as shown in Scheme 2.

Biological activity

The blood pressure lowering activity of forskolin derivatives was evaluated by intravenous administration to anesthetized normotensive cats. The positive inotropic activity of forskolin analogues was tested in spontaneously beating isolated guinea pig atrial preparation. The minimum concentration of the compound required to obtain force of contraction by 50% (EC₅₀) was determined and compared with forskolin. The experimental details for the evaluation of biological activity could be found in earlier publication.⁹

The results of blood pressure lowering activity and positive inotropic activity are summarized in Table 1. From the table it is quite apparent that when 7 β -hydroxy acetyl chain was substituted with ω -amino acyl chain the positive inotropic activity increased in most of the cases viz. **3**, **5**, **6**, **8**, **11** and **12** with EC₅₀ values of 0.1, 0.3, 0.03, 0.55, 0.18 and 0.1 µg/ml respectively when compared with hydroxy acetyl derivative **A**. All these

compounds were found to be highly water soluble. The most potent compound in the series was found to be **6** which was 1.5 times less active than forskolin which had EC_{50} of $0.02 \mu g/ml$. While the similar substitutions on 6β -hydroxyacetyl group (**B**) were found to be less effective, except in one compound **18** ($EC_{50} = 0.04 \mu g/ml$), all the compounds were found to be inactive. Considering some hypotensive effect showed in anesthetized cat, lower doses were tested for positive inotropic activity (without causing significant fall in blood pressure) in anesthetized dog. Compound **6** (in vitro $EC_{50} = 0.03 \mu g/ml$) in an iv. infusion of $0.5 \mu g/kg/min$. could increase cardiac force of contraction only by 20%, while com-

pound **18** (in vitro $EC_{50} = 0.04 \,\mu\text{g/ml}$) was inactive after $1 \,\mu\text{g/kg/min}$. iv. infusion. All these data suggests a rapid metabolic degradation of these compounds. One such possibility could be the hydrolysis of amino acyl chain from the primary OH group.

Conclusion

In our attempt to develop water soluble forskolin analogues with positive inotropic activity, the modification under current study resulted two water soluble compounds with good in vitro activity but failed to provide desired result in vivo.

Scheme 1. 1. DCC, DMAP, EtOAc or (EtOAc + DMF) 2. TFA, ether. 3. HCl, ether. 4. R_1R_2NH , CH_2Cl_2 , r.t./45 °C (for 7)/70–80 °C (for 8).

Experimental

General procedures

Melting points were determined with a Kofler hot stage apparatus and are uncorrected. IR spectra were determined with a Perkin–Elmer 157 Spectrophotometer as KBr film unless otherwise mentioned and the values were expressed in cm⁻¹. ¹H NMR spectra were recorded in CDCl₃ unless otherwise mentioned on a JEOL FT-90 Spectrometer with TMS as internal standard and coupling constant values are expressed in Hz. (Protons at positions 2 & 3 of ring A in Forskolin are buried under methyl signals, hence have not been mentioned separately). Petroleum ether refers to the fraction of b.p. 60– 80 °C. For flash column chromatography silica gel (finer than 0.08 mm particle size) was used. Precoated (silica gel 60 F₂₅₄) TLC plates were used for checking purity of compounds. Vaniline-50% orthophosphoric acid or anisaldehyde- H_2SO_4 spray reagent were used and heated the plates at 110 °C for visualization. All compounds were homogeneous on TLC and gave proper spectral characteristics.

8,13-Epoxy-7β-(2-tertiarybutyloxycarbonylaminomethylcarbonyloxy)acetyloxy-1\alpha,6\beta,9\alpha-trihydroxylabd-14-en-11-one (1). To a solution of compound A (0.43 g; 1 mmol) and DCC (0.247 g; 1.2 mmol) in EtOAc (15 mL), a solution of Boc-Gly (0.192 g; 1.1 mmol) in EtOAc (5 mL) was added under stirring at room temperature, followed by DMAP (0.12 g; 1 mmol). The reaction mixture was stirred at room temperature for 3 h. The DCU was filtered off and the filtrate was washed with aqueous NaHCO₃ followed by brine. The EtOAc layer was dried over anhydrous Na₂SO₄. The

Scheme 2. 1. DCC, DMAP, EtOAc (or EtOAc + DMF) 2. TFA, ether. 3. HCl, ether. 4. Hn', X, CH₂Cl₂, r.t.

Compound No.	EC ₅₀ (GP atrium) (µg/mL)	BP lowering activity (cat) *		
		Dose (iv) (mg/kg)	Fall in BP (mm of Hg)	Duration (in min.)
1	NA	0.3	40	60
3	0.1	1.0	120	>70
5	0.3	0.1	40	120
6	0.03			_
7	1.0	0.1	20	> 210
8	0.55	3.0	100	>120
9	NA	1.0	60	60
10	NA			
11	0.5	1.0	60	30
12	0.1	0.3	80	60
13	> 1.0	3.0	80	100
15	> 10.0	5.0	80	>90
17	0.58			
18	0.04	1.0	40	30
19	_	NA		
20	—	3.0	20	30
21	1.0			

Table 1. Biological activity of Forskolin derivatives

NA=Not active; -= Not done *No significant activity below the dose mentioned.

0.1

 63.7 ± 5.5 55.0 ± 3.9

0.02

Forskolin

solvent was evaporated. The residue was purified by flash chromatography with 30% EtOAc–light petroleum. Yield, 0.43 g (73.7%) as amorphous powder; IR: 3460 (br), 3000, 2960, 1765 (br), 1725 (br); ¹H NMR: 1.02, 1.26, 1.34, 1.71 (4×s, 12H, 4×CH₃), 1.46 [s, 12H, CH₃+C(CH₃)₃], 2.14 (d, 1H, J=2.53, 5H), 2.44 (d, 1H, J_{gem} = 16.71, 12βH), 3.16 (d, 1H, J_{gem} = 16.71, 12αH), 3.85–4.02 (m, 2H, COCH₂NH), 4.44 (t, 1H, J=3.04, 6H), 4.54 (br, 1H, 1H), 4.72 (s, 2H, COCH₂O), 4.93 (dd, 1H, J_{cis} = 10.13, J_{gem} = 1.6, 15H_{cis}), 5.21 (dd, 1H, J_{trans} = 17.21, J_{gem} = 1.6, 15H_{trans}), 5.45 (d, 1H, J=4.05, 7H), 5.91 (dd, 1H, J_{trans} = 17.21, J_{cis} = 10.13, 14H). Anal. calcd for C₂₉H₄₅O₁₁N : C, 59.68; H, 7.77; N, 2.40; found: C, 59.88; H, 7.92; N, 2.31%.

8,13-Epoxy-1*α*,6β,9*α*-trihydroxy-7β-(tritylaminomethylcarbonyloxy)acetyloxylabd-14-en-11-one (2). The compound **A** was treated with Trit-Gly by the same method. The pure product was amorphous solid. Yield, 82%; IR: 3542 (br), 2975, 2945, 1757, 1725; ¹H NMR: 1.03, 1.24, 1.31, 1.43, 1.64 (5×s, 15H, 5×CH₃), 2.16 (br, 1H, 5H), 2.41 (d, 1H, J_{gem} = 17.2, 12βH), 3.18 (d, 1H, J_{gem} = 17.2, 12αH), 3.34 (br, 2H, CH₂NH), 4.40–4.60 (m, 2H, 1H & 6H), 4.60 (br s, 2H, COCH₂O), 4.90 (dd, 1H, J_{cis} = 10.6, J_{gem} = 2.0, 15H_{cis}), 5.19 (dd, 1H, J_{trans} = 17.2, J_{gem} = 2.0, 15H_{trans}), 5.43 (d, 1H, J=3.04, 7H), 5.92 (dd, 1H, J_{trans} = 17.2, J_{cis} = 10.6, 14H), 7.2–7.5 (m, 15H, 15×PhH). Anal. calcd for C₄₂H₅₁O₉N: C, 71.15; H, 7.08; N, 1.93; found: C, 70.98; H, 7.04; N, 1.89%.

7ß - (Aminomethylcarbonyloxy)acetyloxy - 8, 13 - epoxy- $1\alpha, 6\beta, 9\alpha$ -trihydroxylabd-14-en-11-one, hydrochloride (3). Compound 2 (0.1 g; 0.14 mmol) was dissolved in ether (10 mL) and TFA (0.2 mL) was added. The clear solution was kept at room temperature. When most of the starting material disappeared (nearly 1 h), ethereal HCl was added dropwise till no further precipitation occurred. The white solid was filtered off and washed with dry ether several times. The solid was dried in a vacuum pump for 2 h. The white solid was recrystallized from MeOH-dry ether. Yield 0.052 g (68.9%); IR: 3360 (br), 2950 (br), 1765, 1760, 1727; ¹H NMR (CD₃OD): 1.0, 1.25, 1.32, 1.43, 1.70 (5×s, 15H, 5×CH₃), 2.1 (d, 1H, J = 3.04, 5H), 2.35 (d, 1H, $J_{gem} = 16.2$, 12 β H), 3.2 (d, 1H, $J_{gem} = 16.2$, $12\alpha H$), 3.94 (s, 2H, COCH₂N), 4.35-4.46 (m, 2H, 1H & 6H), 4.85 (dd, 1H, $J_{cis} = 10.53$, $J_{gem} = 1.62, 15H_{cis}$, 4.90 (s, 2H, COCH₂O), 5.06 (dd, 1H, $J_{trans} = 17.21$, $J_{gem} = 1.62$, $15H_{trans}$), 5.95 (d, 1H, J = 4.56, 7H), 6.02 (dd, 1H, $J_{trans} = 17.21, J_{cis} = 10.53$, 14H). Anal. calcd for C24H38O9NCl, H2O: C, 53.57; H, 7.49; N, 2.60; Cl, 6.59; found: C, 53.63; H, 7.59; N, 2.58; Cl, 6.44%.

7 β -(Chloroacetyloxy)acetyloxy-8,13-epoxy-1 α ,6 β ,9 α -trihydroxylabd-14-en-11-one (4). Compound A (4.4 g; 10.33 mmol) was stirred at room temperature with chloroacetic acid (1.04 g; 11 mmol), DCC (2.47 g; 12 mmol) and DMAP (1.34 g; 10.98 mmol) in EtOAc (60 mL) for 16 h. The DCU was filtered off and the filtrate was washed with 1N aq. NaHCO₃ followed by brine. The EtOAc layer was dried over anhydrous Na₂SO₄. The solvent was evaporated and the crude product was purified by flash chromatography with 10% CH₃CN-CHCl₃. Yield 4 g. (77.1%); m.p., 168-70°C (EtOAc-light petroleum); IR: 3450, 2950, 1790, 1775, 1715, 1705; ¹H NMR: 1.06, 1.30, 1.37, 1.46, 1.71 $(5 \times s, 15H, 5 \times CH_3), 2.19$ (d, 1H, J=3.04, 5H), 2.45 (d, 1H, $J_{gem} = 17.21$, 12 β H), 3.19 (d, 1H, $J_{gem} = 17.21$, 12aH), 4.06 (s, 2H, CH₂Cl), 4.56 (m, 2H, 1H & 6H), 4.80 (s, 2H, COCH₂O), 4.94 (dd, 1H, $J_{cis} = 11.13$, $J_{gem} = 2.03$, $15H_{cis}$), 5.21 (dd, 1H, $J_{trans} = 17.21$, $J_{gem} = 2.03, 15H_{trans}$, 5.48 (d, 1H, J=4.05, 7H), 5.96 (dd, 1H, $J_{trans} = 17.21$, $J_{cis} = 11.13$, 14H). Anal. calcd for C₂₄H₃₅O₉Cl : C, 57.31; H, 7.01; Cl, 7.05; found: C, 57.29; H, 7.23; Cl, 7.20%.

7 β -[3-(Dimethylamino)propanoyloxylacetyloxy-8,13-epoxy-1 α ,6 β ,9 α -trihydroxylabd-14-en-11-one (5). Compound A (0.426 g; 1 mmol) and DCC (0.21 g; 1.02 mmol) were dissolved in EtOAc (5 mL) and DMF (2 mL). To the clear solution 3-dimethylaminopropionic acid hydrochloride (0.153 g; 1 mmol) was added followed by DMAP (0.185 g; 1.5 mmol). The reaction mixture was stirred at room temperature for 16 h. After usual work up (see exptl for 1). The crude product was purified by flash chromatography with 20% CH₃CN–CHCl₃ followed by 10% MeOH–CHCl₃. The pure material was converted into hydrochloride salt in EtOAc and HCl– dry ether. Yield 56%; m.p., 214–15 °C (MeOH-dry ether); IR: 3400–3300 (br), 2950 (br), 1775, 1750 (br), 1720; ¹H NMR (CDCl₃+CD₃OD): 1.03, 1.27, 1.36, 1.43, 1.71 (5×s, 15H, 5×CH₃), 2.14 (d, 1H, J=3.04, 5<u>H</u>), 2.39 (d, 1H, J_{gem}=17.21, 12β<u>H</u>), 2.86, 2.89 [2×s, 6H, N(CH₃)₂], 2.93–3.17 (br, 3H, CH₂CH₂N & 12α<u>H</u>), 3.37 (t, 2H, J=6.08, COCH₂CH₂), 4.49 (br, 2H, 1<u>H</u> & 6<u>H</u>), 4.70, 4.91 (2×d, 2H, J_{gem}=15.2, COCH₂O), 4.91 (dd, 1H, J_{cis}=11.14, J_{gem}=1.5, 15<u>H</u>_{cis}), 5.16 (dd, 1H, J_{trans}=17.21, J_{gem}=1.5, 15<u>H</u>_{trans}), 5.41 (d, 1H, J=4.05, 7<u>H</u>), 6.00 (dd, 1H, J_{trans}=17.21, J_{cis}=11.14, 14<u>H</u>). Anal. calcd for C₂₇H₄₄O₉NCl, 2H₂O: C, 54.22; H, 8.08; N, 2.34; Cl, 5.93; found: C, 54.03; H, 8.24; N, 2.32; Cl, 5.69%.

7ß-(Diethylaminomethylcarbonyloxy)acetyloxy-8,13-epoxy- $1\alpha, 6\beta, 9\alpha$ -trihydroxylabd-14-en-11-one, hydrochloride (6). To a solution of 4 (3.96 g; 7.88 mmol) in CH₂Cl₂ (40 mL), diethyl amine (4 mL) was added and the clear solution was kept at room temperature for 14 h. The reaction mixture was evaporated to dryness and the residue was purified by flash chromatography with 10% CH₃CN-CHCl₃ (to remove unreacted 4 and hydrolyzed product A followed by 20% CH₃CN-CHCl₃. The fraction containing the required compound was evaporated and redissolved in EtOAc. To the clear solution HCl in dry ether was added. The mixture was evaporated to small volume and excess dry ether was added. The white precipitate was collected and dried. It was recrystallized from dry MeOH-dry ether. Yield, 2 g (44%); m.p., 140-42°C; IR: 3380 (br), 2960 (br), 1765 (br), 1728; ¹H NMR: 1.03, 1.26, 1.34, 1.43, 1.69 (5×s, 15H, $5 \times CH_3$), 1.47 (t, 6H, J = 6.58, $2 \times CH_2CH_3$), 2.16 (d, 1H, J = 3.04, 5H), 2.41 (d, 1H, $J_{gem} = 17.21$, 12 β H), 3.19 (d, 1H, J_{gem}=17.21, 12\alphaH), 3.26-3.47 (m, 4H, 2×CH₃CH₂N.HCl), 3.99 (s, 2H, COCH₂NEt₂), 4.37-4.60 (br, 2H, 1H & 6H), 4.84 (s, 2H, COCH₂O), 4.87 (dd, 1H, $J_{cis} = 10.13$, $J_{gem} = 2.03$, $15H_{cis}$), 5.16 (dd, 1H, $J_{trans} = 17.21, J_{gem} = 2.03, 15 H_{trans}$, 5.50 (d, 1H, J = 4.05, 7H), 5.90 (dd, 1H, $J_{trans} = 17.21$, $J_{cis} = 10.13$, 14H). Anal. calcd for C₂₈H₄₆O₉NCl, 1.5H₂O: C, 55.76; H, 8.19; N, 2.32; Cl, 5.88; found: C, 55.98; H, 8.25; N, 2.23; Cl, 6.18%.

7β-(Diisopropylaminomethylcarbonyloxy)acetyloxy-8,13epoxy-1α,6β,9α-trihydroxylabd-14-en-11-one, hydrochloride (7). The compound 4 (0.25 g; 0.5 mmol) was heated with diisopropyl amine (2 mL) at 45 °C for 3 h. Diisopropyl amine was removed under reduced pressure and the residue was purified by flash chromatography as described for 6. Yield, 0.121 g (40%); m.p., 148–50 °C (MeOH-dry ether); IR: 3410 (br), 2990 (br), 1770 (br), 1730; ¹H NMR: 1.03, 1.30, 1.34, 1.43, (4×s, 12H, $4×CH_3$), 1.49–1.63 [br m, 12H, $2×CH(CH_3)_2$], 1.70 (s, 3H, CH_3), 2.14 (d, 1H, J=2.53, 5H), 2.44 (d, 1H, $\begin{array}{l} J_{gem} = 17.21, \ 12\beta\underline{H}), \ 3.18 \ (d, \ 1H, \ J_{gem} = 17.21, \ 12\alpha\underline{H}), \\ 3.99 \ (m, \ 4H, \ 2\times C\underline{H}Me_2 + COC\underline{H}_2NPr^i_2.HCl), \ 4.43- \\ 4.63 \ (br, \ 2H, \ 1\underline{H} \ \& \ 6\underline{H}), \ 4.83 \ (s, \ 2H, \ COC\underline{H}_2O), \ 4.89 \\ (dd, \ 1H, \ J_{cis} = 10.13, \ J_{gem} = 1.63, \ 15\underline{H}_{cis}), \ 5.19 \ (dd, \ 1H, \\ J_{trans} = 16.21, \ J_{gem} = 1.63, \ 15\underline{H}_{trans}), \ 5.51 \ (d, \ 1H, \ J = 4.05, \\ 7\underline{H}), \ 5.94 \ (dd, \ 1H, \ J_{trans} = 16.21, \ J_{cis} = 10.13, \ 14\underline{H}). \ Anal. \\ calcd \ for \ C_{30}H_{50}O_9NCl, \ 1.5H_2O: \ C, \ 57.08; \ H, \ 8.46; \ N, \\ 2.22; \ Cl, \ 5.62; \ found: \ C, \ 56.97; \ H, \ 8.44; \ N, \ 2.01; \ Cl, \\ 5.53\%. \end{array}$

8,13-Epoxy-1 α ,6 β ,9 α -trihydroxy-7 β -[(3,4,5-trimethoxyanilino)methylcarbonyloxylacetyloxylabd-14-en-11-one (8). A solution of 4 (0.25 g; 0.5 mmol) and 3,4,5-trimethoxyaniline (0.18 mL) in toluene (3 mL) was heated at 70-80 °C for 16 h. The solvent was removed and the residue was purified by flash chromatography with 10% CH₃CN–CHCl₃. Yield, 0.06 g (20%); m.p., 108–09 °C (EtOAc-light petroleum); IR; 3440 (br), 2950 (br), 1765, 1760, 1725; ¹H NMR: 1.03, 1.24, 1.34, 1.41, 1.67 (5×s, 15H, $5 \times CH_3$), 2.19 (d, 1H, J=3.04, 5H), 2.44 (d, 1H, $J_{gem} = 17.2\overline{1}, 12\beta H$), 3.19 (d, 1H, $J_{gem} = 17.21, 12\alpha \underline{H}$), 3.74 (s, 3H, OCH₃), 3.81 (s, 6H, 2×OCH₃), 4.03 (s 2H, COCH₂N), 4.54 (br, 2H, 1H & 6H), 4.79 (s, 2H, $COCH_2O$, 4.93 (dd, 1H, $J_{cis} = 11.14$, $J_{gem} = 1.62$, $15\underline{H}_{cis}$), 5.19 (dd, 1H, $J_{trans} = 17.21$, $J_{gem} = 1.62$, 15H_{trans}), 5.47 (d, 1H, J=4.05, 7H), 5.86 (s, 2H, ArH), 5.96 (dd, 1H, $J_{trans} = 17.21$, $J_{cis} = 11.14$, 14H). Anal. calcd for C₃₃H₄₇O₁₂N, H₂O: C, 59.35; H, 7.39; N, 2.09; found: C, 59.54 H, 7.22; N, 2.18%.

Compounds 9–13 were prepared from 4 with the use of appropriate amine by the method as described for the synthesis of compound 6.

8, 13 - Epoxy - 7β - [(homopiperidino) methylcarbonyloxy]acetyloxy-1 α ,6 β ,9 α -trihydroxylabd-14-en-11-one (9). The crude product was purified by flash chromatography with 20% CH₃CN-CHCl₃. Yield, 30%, as hydrochloride salt; m.p., 146-48 °C; IR; 3400 (br), 2960 (br), 1765 (br), 1728; ¹H NMR: 1.04, 1.27, 1.34, 1.44, 1.71 (5×s, 15H, 5×CH₃), 1.74–2.31 [m, 8H, 4×CH₂ (3', 4', 5' & 6')], 2.14 (d, 1H, J=3.04, 5H), 2.43 (d, 1H, $J_{gem} = 17.21, 12\beta \underline{H}$), 3.19 (d, 1H, $J_{gem} = 17.21, 12\alpha H$), 3.43 [br, 4H, 2×CH₂ (2' & 7')], 4.04 (br 2H, COCH₂N), 4.56 (br, 2H, 1H & 6H), 4.86 (br, 2H, COCH₂O), 4.91 (dd, 1H, $J_{cis} = 11.14$, $J_{gem} = 1.82$, $15H_{cis}$), 5.21 (dd, 1H, $J_{trans} = 17.21, J_{gem} = 1.82, 15H_{trans}$, 5.51 (d, 1H, J=4.05, 7<u>H</u>), 5.94 (dd, 1H, $J_{trans} = 17.21$, $J_{cis} = 11.14$, 14<u>H</u>). Anal. calcd for C₃₀H₄₈O₉NCl, 1.5 H₂O: C, 58.76; H, 8.39; N, 2.28; Cl, 5.78; found: C, 58.56 H, 8.12; N, 2.27; Cl, 5.39%.

7β-(2,6-Dimethylmorpholinomethylcarbonyloxy)acetyloxy-8,13-epoxy-1α,6β,9α-trihydroxylabd-14-en-11-one (10). Yield, 0.094 g (30.5%), as hydrochloride salt; m.p., 158–60 °C; IR: 3400 (br), 2950 (br), 1762 (br), 1723; ¹H

2081

NMR: 1.05 (s, 3H, C<u>H</u>₃), 1.23, 1.30 (2×d, 6H, J=6.38, 2×CHC<u>H</u>₃), 1.26 (s, 6H, 2×C<u>H</u>₃), 1.43, 1.69 (2×s, 6H, 2×C<u>H</u>₃), 2.27 (d, 1H, J=2.03, 5<u>H</u>), 2.41 (d, 1H, J_{gem} = 17.21, 12β<u>H</u>), 2.57–2.91 [m, 4H, 2×C<u>H</u>₂ (3' & 5')], 3.18 (d, 1H, J_{gem} = 17.21, 12α<u>H</u>), 3.41 (m, 2H, 2×CHC<u>H</u>₃), 3.84 (m, singlet after D₂O exchange, 2H, COC<u>H</u>₂N), 4.37–4.58 (br, 2H, 1<u>H</u> & 6<u>H</u>), 4.81 (s, 2H, COC<u>H</u>₂O), 4.87 (dd, 1H, J_{cis} = 10.13, J_{gem} = 1.6, 15<u>H</u>_{cis}), 5.17 (dd, 1H, J_{trans} = 17.21, J_{gem} = 1.6, 15<u>H</u>_{trans}), 5.48 (d, 1H, J=4.05, 7<u>H</u>), 5.89 (dd, 1H, J_{trans} = 17.21, J_{cis} = 10.13, 14<u>H</u>). Anal. calcd for C₃₀H₄₈O₁₀NCl: C, 58.29; H, 7.83; N, 2.27; Cl, 5.74; found: C, 58.05; H, 7.92; N, 2.21; Cl, 5.90%.

8,13-Epoxy-7β-[(4-phenylpiperidino)methylcarbonyloxy]acetyloxy-1 α ,6 β ,9 α -trihydroxylabd-14-en-11-one (11). The crude product was purified by flash chromatography with 10% CH₃CN-CHCl₃. Yield, 33%; m.p., 99-101 °C (EtOAc-light petroleum); IR: 3445 (br), 3150 (br), 2970 (br), 1775 (br), 1725; ¹H NMR: 1.03, 1.27, 1.36, 1.43, 1.70 (5×s, 15H, 5×CH₃), 1.86, 2.20 (2×m, 5H, 3'-CH₂, 5'-CH₂+5H), 2.44 (d, 1H, $J_{gem} = 17.21$, 12βH), 2.79 (m, 1H, 4'-CH), 3.07, 3.17 (2×m, 5H, 2'-CH₂, 6'-CH₂ & 12αH), 3.39 (s, 2H, COCH₂N), 4.43-4.60 (br, 2H, 1H & 6H), 4.74 (s, 2H, COCH₂O), 4.93 (dd, 1H, $J_{cis} = 10.63$, $J_{gem} = 2.03$, $15H_{cis}$), 5.20 (dd, 1H, $J_{trans} = 17.21, J_{gem} = 2.03, 15H_{trans}$, 5.48 (d, 1H, J=4.56, 7H), 5.94 (dd, 1H, $J_{trans} = 17.21$, $J_{cis} = 10.63$, 14H), 7.21 (br 5H, 5×Ph-H). Anal. calcd for C₃₅H₄₉O₉N: C, 66.96; H, 7.86; N, 2.23; found: C, 67.23; H, 8.10; N, 2.39%.

8,13-Epoxy-7β-[(4-methylpiperazino)methylcarbonyloxy]acetyloxy-1 α ,6 β ,9 α -trihydroxylabd-14-en-11-one (12). The crude product was purified by flash chromatography with 20% CH₃CN-CHCl₃ followed by 10% MeOH-CHCl₃. Yield, 51% as free base; m.p., 95-97 °C (EtOAc-light petroleum); IR: 3550 (br), 3220 (br), 2970 (br), 1775 (br), 1725; ¹H NMR: 1.04, 1.26, 1.34, 1.43, 1.70 (5×s, 15H, 5×CH₃), 2.17 (d, 1H, J = 3.04, 5H), 2.29 (s, 3H, NCH₃), 2.44 (d, 1H, $J_{gem} = 17.21$, 12β H), 2.56, 2.63 (2×m, 8H, 2'-CH₂, 3'-CH₂, 5'-CH₂ & 6'-CH₂), 3.19 (d, 1H, $J_{gem} = 17.21$, $12\alpha \underline{H}$), 3.33 (s, 2H, COCH₂N), 4.40-4.57 (br, 2H, 1H & 6H), 4.74 (s, 2H, COCH2O), 4.91 (dd, 1H, $J_{cis} = 11.13$, $J_{gem} = 1.82$, $15\underline{H}_{cis}$), 5.19 (dd, 1H, $J_{trans} = 17.21$, $J_{gem} = 1.82$, $15H_{trans}$), 5.48 (d, 1H, J = 4.05, 7H), 5.95 (dd, 1H, $J_{trans} = 17.21, J_{cis} = 11.13$, 14H). Anal. calcd for C₂₉H₄₆O₉N₂: C, 61.46; H, 8.18; N, 4.94; found: C, 61.28; H, 8.39; N, 4.99%.

8,13-Epoxy-7β-[(4-carbethoxypiperazino)methylcarbonyloxylacetyloxy-1α,6β,9α-trihydroxylabd-14-en-11-one (13). The crude product was purified by flash chromatography with 18% CH₃CN–CHCl₃. Hydrochloride salt was prepared from EtOAc–HCl in dry ether. Yield, 28.4%; m.p., 157–58 °C (MeOH–dry ether); IR: 3420 (br), 2950 (br), 1765 (br), 1725; ¹H NMR: 1.04 (s, 3H, $\begin{array}{l} C\underline{H}_{3}),\,1.20\ (t,\,3H,\,J=7.08,\,OCH_{2}C\underline{H}_{3}),\,1.30,\,1.37,\,1.46,\\ 1.\overline{71}\ (4\times s,\,12H,\,4\times C\underline{H}_{3}),\,2.14\ (d,\,1H,\,J=3.04,\,5\underline{H}),\,2.42\\ (d,\,1H,\,J_{gem}=17.21,\,12\beta\underline{H}),\,2.80\ (br,\,triplet\,after\,D_{2}O\\ exchange,\,4H,\,J=6.08,\,2'-C\underline{H}_{2},\,6'-C\underline{H}_{2}),\,3.20\ (d,\,1H,\,J_{gem}=17.21,\,12\alpha\underline{H}),\,3.30\ (br,\,t\,after\,D_{2}O\ exchange,\,4H,\,J=6.08,\,3'-C\underline{H}_{2}\ \&\,5'-C\underline{H}_{2}),\,3.91\ (br,\,triplet\,after\,D_{2}O\ exchange,\,2H,\,COC\underline{H}_{2}\overline{N}),\,4.14\ (quartet,\,2H,\,J=7.08,\,C\underline{H}_{2}CH_{3}),\,4.57\ (br,\,2H,\,1\underline{H}\ \&\,6\underline{H}),\,4.86\ (s,\,2H,\,COC\underline{H}_{2}O),\,4.91\ (dd,\,1H,\,J_{cis}=11.14,\,J_{gem}=1.62,\,15\underline{H}_{cis}),\,5.18\ (dd,\,1H,\,J_{trans}=17.21,\,J_{gem}=1.62,\,15\underline{H}_{trans}),\,5.50\ (d,\,1H,\,J=4.05,\,7\underline{H}),\,5.95\ (dd,\,1H,\,J_{trans}=17.21,\,J_{cis}=11.14,\,14\underline{H}).\ Anal.\ calcd\ for\ C_{31}H_{49}O_{11}N_{2}Cl:\ C,\,54.82;\,H,\,7.57;\,N,\,4.12;\,Cl,\,5.21;\ found:\ C,\,55.01;\,H,\,7.65;\,N,\,4.12;\,Cl,\,5.92\%. \end{array}$

8,13-Epoxy-1 α ,7 β ,9 α -trihydroxy-6 β -(tritylaminomethylcarbonyloxy)acetyloxylabd-14-en-11-one (14). Compound **B** was treated with Trit-Gly by DCC-DMAP method (see experimental for compound 1) The crude product was purified by flash chromatography with 15% EtOAc-light petroleum. Yield, 75%; white amorphous powder; IR: 3450 (br), 2940 (br), 1755 (br), 1720; ¹H NMR: 0.92, 1.04, 1.24, 1.38, 1.45 ($5 \times s$, 15H, $5 \times CH_3$), 2.31(d, 1H, J = 3.04, 5H), 2.46 (d, 1H, $J_{gem} = 17.21$, 12β H), 3.16 (d, 1H, $J_{gem} = 17.21$, 12α H), 3.18 (s, 2H, COCH₂N), 4.23 (br, doublet after D_2O , 1H, J=4.23, 7H), 4.56 (br, 3H, COCH₂O & 1H), 4.93 (dd, 1H, $J_{cis} = 10.13$, $J_{gem} = 1.52$, $15H_{cis}$), 5.11 (dd, 1H, $J_{trans} = 16.7, J_{gem} = 1.52, 15 \underline{H}_{trans}$), 5.86 (t, 1H, J=2.33, $6\underline{H}$), 6.05 (dd, 1H, $J_{trans} = 16.7$, $J_{cis} = 10.13$, $14\underline{H}$), 7.07– 7.53 (m, 15H, 15×PhH). Anal. calcd for $C_{43}H_{51}O_9N$: C, 71.15; H, 7.08; N, 1.93; found: C, 71.32; H, 7.19; N, 1.87%.

8,13-Epoxy-6β-(aminomethylcarbonyloxy)acetyloxy-1*α*, 7β,9*α*-trihydroxylabd-14-en-11-one, hydrochloride (15). This compound was obtained by deprotecting trityl group from 14 (for details see experimental for 3). Yield, 55%; m.p., 165–67 °C (MeOH–dry ether); IR: 3425 (br), 2925 (br), 1758 (br), 1715; ¹H NMR (CD₃OD):1.01, 1.03, 1.37, 1.41, 1.53 (5×s, 15H, 5×CH₃), 2.36 (d, 1H, J=3.04, 5H), 2.35, 3.23 (2×d, 2H, J_{gem}=16.2, 12βH & 12αH), 3.91 (s, 2H, COCH₂N), 4.22 (d, 1H, J=5.06, 7H), 4.46 (br, 1H, 1H), 4.81 (s, 2H, COCH₂O), 4.84 (dd, 1H, J_{cis}=10.33, J_{gem}=1.5, 15H_{cis}), 5.09 (dd, 1H, J_{trans}=17.21, J_{gem}=1.5, 15H_{trans}), 5.80 (dd, 1H, J=3.04, 5.06, 6H), 6.11 (dd, 1H, J_{trans}=17.21, J_{cis}=10.33, 14H). Anal. calcd for C₂₄H₃₈O₉NCl, H₂O: C, 53.57; H, 7.49; N, 2.60; Cl, 6.59; found: C, 53.85; H, 7.49; N, 2.25; Cl, 6.58%.

6β-(Chloroacetyloxy)acetyloxy-8,13-epoxy-1α,7β,9α-trihydroxylabd-14-en-11-one (16). This compound was prepared by the same method as described for the preparation of 4 (Scheme 1). The crude product was purified by flash chromatography with 8% CH₃CN–CHCl₃. Yield, 40%; ¹H NMR: 1.0, 1.09, 1.39, 1.41, 1.59 (5×s, $\begin{array}{l} 15\text{H}, \ 5\times \text{CH}_3), \ 2.37 \ (\text{d}, \ 1\text{H}, \ J=3.04, \ 5\underline{\text{H}}), \ 2.49 \ (\text{d}, \ 2\text{H}, \\ J_{gem}=17.21, \ 12\beta\underline{\text{H}}), \ 3.20 \ (\text{d}, \ 1\text{H}, \ J_{gem}=17.21, \ 12\alpha\underline{\text{H}}), \\ 4.16 \ (\text{s}, \ 2\text{H}, \ \text{COCH}_2\text{Cl}), \ 4.30 \ (\text{d}, \ 1\text{H}, \ J=4.56, \ 7\underline{\text{H}}), \ 4.64 \\ (\text{br}, \ 1\text{H}, \ 1\underline{\text{H}}), \ 4.74 \ (\text{s}, \ 2\text{H}, \ \text{COCH}_2\text{O}), \ 4.97 \ (\text{dd}, \ 1\text{H}, \\ J_{cis}=10.53, \ \ J_{gem}=1.82, \ 15\underline{\text{H}}_{cis}), \ \ 5.16 \ (\text{dd}, \ 1\text{H}, \\ J_{trans}=17.21, \ \ J_{gem}=1.82, \ 15\underline{\text{H}}_{trans}), \ \ 5.94 \ (\text{dd}, \ 1\text{H}, \\ J=4.05, \ \ 3.04, \ \ 6\underline{\text{H}}), \ \ 6.11 \ (\text{dd}, \ 1\text{H}, \ J_{trans}=17.21, \\ J_{cis}=10.53, \ 14\underline{\text{H}}). \ \text{Anal. calcd for } C_{24}\text{H}_{35}\text{O_9}\text{Cl: C}, \ 57.31; \\ \text{H}, \ 7.01; \ \text{Cl}, \ 7.05; \ \text{found: C}, \ 57.25; \ \text{H}, \ 7.08; \ \text{Cl}, \ 7.25\%. \end{array}$

The compound 16 was treated with the required amine in dichloromethane for 16 h as described for the synthesis of compound 6 to generate 17 to 20.

8,13-Epoxy-6β-(piperidinomethylcarbonyloxy)acetyloxy- $1\alpha,7\beta,9\alpha$ -trihydroxylabd-14-en-11-one, hydrochloride (17). The crude product was purified by flash chromatography with 15% CH₃CN-CHCl₃ followed by 5% MeOH-CHCl₃. Yield, 41%; m.p., 149-50°C (MeOHdry ether); IR: 3450-3280 (br), 2970 (br), 1765 (br), 1705; ¹H NMR: 1.0, 1.09, 1.37, 1.40, 1.56 (5×s, 15H, 5×CH₃), 1.60–2.57 (m, 6H, 3'-CH₂, 4'-CH₂ & 5'-CH₂), 2.36 (d, 1H, J = 3.04, 5H), 2.49 (d, 1H, $J_{gem} = 17.21$, $12\beta H$), 3.20 (d, 1H, $J_{gem} = 17.21$, $12\alpha H$), 3.57–3.97 (2×m, 4H, 2'-CH₂ & 6'CH₂), 4.17 (br, 2H, COCH₂N), 4.31 (d, 1H, J=5.06, 7H), 4.64 (br, 1H, 1H), 4.74 (s, 2H, $COCH_2O$), 4.96 (dd, 1H, $J_{cis} = 11.14$, $J_{gem} = 1.82$, $15\underline{H}_{cis}$), 5.15 (dd, 1H, $J_{trans} = 17.21$, $J_{gem} = 1.82$, $15\underline{H}_{trans}$), 5.91 (br, 1H, 6<u>H</u>), 6.12 (dd, 1H, J_{trans} = 17.21, $J_{cis} = 11.14$, 14H). Anal. calcd for $C_{29}H_{46}O_9NCl$: C, 59.22; H, 7.88; N, 2.38; Cl, 6.03 ; found: C, 59.42; H, 8.14; N, 2.29; Cl, 5.88%.

8,13-Epoxy-6β-(morpholinomethylcarbonyloxy)acetyloxy- $1\alpha,7\beta,9\alpha$ -trihydroxylabd-14-en-11-one (18). The crude product was purified by flash chromatography with 5% MeOH-CHCl₃ and was converted into hydrochloride salt in EtOAc and HCl-ether. Yield, 40%; m.p., 168-70 °C (MeOH-dry ether); IR: 3450 (br), 2960 (br), 1765 (br), 1722; ¹H NMR: 1.0, 1.1, 1.39, 1.41, 1.57 (5×s, 15H, $5 \times CH_3$), 2.39 (d, 1H, J=3.04, 5H), 2.49 (d, 1H, $J_{gem} = 17.21, 12\beta H$, 3.21 (d, 1H, $J_{gem} = 17.21, 12\alpha H$); 3.39-3.53 (m, 4H, 3'-CH₂ & 5'-CH₂), 4.0 (br, 2H, COCH₂N), 4.03-4.20 (m, 4H, 2'-CH₂ & 6'-CH₂), 4.31 (d, 1H, J=4.05, 7H), 4.67 (br, 1H, 1H), 4.77 (br, 2H, $COCH_2O$), 4.97 (dd, 1H, $J_{cis} = 10.13$, $J_{gem} = 2.03$, $15\underline{H}_{cis}$), 5.16 (dd, 1H, $J_{trans} = 17.21$, $J_{gem} = 2.03$, 15H_{trans}), 5.91 (dd, 1H, J=3.04, 4.05, 6H), 6.05 (dd, 1H, $J_{trans} = 17.21$, $J_{cis} = 10.13$, 14H). Anal. calcd for C₂₈H₄₄O₁₀NCl, 2.5 H₂O : C, 53.11; H, 7.48; N, 2.21; Cl, 5.59; found: C, 53.15; H, 7.91; N, 2.13; Cl, 5.60%.

8,13-Epoxy- 6β -[(4-phenylpiperidino)methylcarbonyloxy]acetyloxy- 1α , 7β , 9α -trihydroxylabd-14-en-11-one (19). The crude material was purified by flash chromatography with 15% CH₃CN–CHCl₃. The pure product was

converted into hydrochloride salt from dry EtOAc-dry HCl and crystallized from MeOH-dry ether. Yield, 31%; m.p., 155–56°C; IR: 3420–3250 (br), 2970 (br), 1760 (br), 1720; ¹H NMR: 1.0, 1.07, 1.39, 1.40, 1.57 (5×s, 15H, 5×CH₃), 1.91–2.14 (m, 4H, 3'-CH₂, & 5'-C<u>H</u>₂), 2.37 (br, 1H, 5<u>H</u>), 2.47 (d, 1H, $J_{gem} = 16.2, 12\beta$ <u>H</u>), 2.61 (m, 1H, 4'-CH), 2.71-3.64 (2×m, 4H, 2'-CH₂ & 6'-CH₂), 3.21 (d, 1H, $J_{gem} = 16.2$, 12 α H); 4.06 (m, 2H, COCH₂N), 4.32 (d, 1H, J = 5.06, 7H), 4.66 (br, 1H, 1H), 4.73 (br, s after D₂O exchange, 2H, COCH₂O), 4.96 (dd, 1H, $J_{cis} = 11.14$, $J_{gem} = 1.52$, $15H_{cis}$, 5.15 (dd, 1H, $J_{trans} = 17.21, J_{gem} = 1.52, 15 H_{trans}), 5.91 (dd, 1H,$ J = 3.04, 5.06, 6H), 6.12 (dd, 1H, $J_{trans} = 17.21$, $J_{cis} = 11.14, 14H$), 7.29 (br s, 5H, 5×PhH). Anal. calcd for C₃₅H₅₀O₉NCl, 0.5 H₂O: C, 62.44; H, 7.64; N, 2.08; Cl, 5.27; found: C, 62.51; H, 7.65; N, 2.36; Cl, 5.31%.

8,13-Epoxy-6β-[(4-methylpiperazino)methylcarbonyloxy]acetyloxy-1 α ,7 β ,9 α -trihydroxylabd-14-en-11-one (20). The crude product was partitioned between cold dil. HCl and EtOAc. The EtOAc layer containing unreacted 16 and hydrolyzed product **B**. The aqueous layer was basified and extracted with EtOAc. The EtOAc layer was washed with brine, dried over anhydrous Na₂SO₄. The pure product was converted into hydrochloride salt from EtOAc-dry ether. The product was finally crystallized from dry MeOH-ether. Yield, 34%; m.p., 161-62°C; IR: 3440 (br), 2970 (br), 1765 (br), 1725; ¹H NMR (CDCl₃+CD₃OD): 1.0, 1.06, 1.40, 1.43, 1.54 $(5 \times s, 15H, 5 \times CH_3), 2.39$ (d, 1H, J=3.04, 5H), 2.40 (d, 1H, $J_{gem} = 16.71$, $12\beta H$), 2.96 (s, 3H, NCH₃), 3.20 (d, 1H, $J_{gem} = 16.71$, 12α H); 3.70, 3.97–4.11 (2×m, 10H, 2'-CH₂, 3'-CH₂, 5'-CH₂, 6'-CH₂ & COCH₂N), 4.29 (d, 1H, J=5.06, 7H), 4.51 (br, 1H, 1H), 4.80 (br, 2H, $COCH_2O$, 4.97 (dd, 1H, $J_{cis} = 10.63$, $J_{gem} = 1.62$, $15H_{cis}$), 5.16 (dd, 1H, $J_{trans} = 17.21$, $J_{gem} = 1.62$, 15H_{trans}), 5.89 (dd, 1H, J=3.04, 5.06, 6H), 6.16 (dd, 1H, $J_{trans} = 17.21$, $J_{cis} = 10.63$, 14H). Anal. calcd for C₂₉H₄₇O₉N₂Cl, 1.5 H₂O: C, 55.27; H, 8.00; N, 4.45; Cl, 5.63; found: C, 55.38; H, 8.25; N, 4.15; Cl, 5.95%.

6β-(3-Dimethylaminopropanoyloxy)acetyloxy-8,13-epoxy-1α,7β,9α-trihydroxylabd-14-en-11-one (21). This was prepared by the treatment of **B** with 3-dimethylamino propionic acid in a manner similar to the synthesis of compound **5**. The crude product was purified by flash chromatography with 5% MeOH–EtOAc followed by 10% MeOH–EtOAc. The pure product was converted into hydrochloride salt from EtOAc and HCl–dry ether. Yield, 50%; m.p., 132–33 °C (MeOH–dry ether); IR: 3450 (br), 2975 (br), 1760 (br), 1728; ¹H NMR: 1.0, 1.06, 1.37, 1.41, 1.57 (5×s, 15H, 5×CH₃), 2.37 (d, 1H, J=3.04, 5H), 2.48 (d, 1H, J_{gem}=17.21, 12βH), 2.82, 2.86 (2×s, 6H, N(CH₃)₂], 2.99–3.43 (m, 5H, COCH₂CH₂N & 12αH); 4.30 (d, 1H, J=5.06, 7H), 4.63 (br, 1H, 1H), 4.69 (s, 2H, COCH₂O), 4.95 (dd, 1H,

Acknowledgements

The authors gratefully acknowledge Dr. R. H. Rupp for his interest and encouragement. We also acknowledge late Dr. A. N. Dohadwalla, Dr. N. K. Dadkar for their help in pharmacological screening. Dr. P. K. Inamdar and his group for analytical data.

References

1. Bhat, S. V.; Bajwa, B. S.; Dornauer, H.; deSouza, N. J.; Fehlhaber, H. W. *Tetrahedron Lett.* **1977**, 1669.

2. (a) deSouza, N. J.; Dohadwalla, A. N.; Reden, J. Med. Res. Rev. **1983**, *3*, 201. (b) Caprioli, J.; Sears, M.; Baussher, L.;

Gregory, D.; Mead, A. Invest. Ophthelmol. Vis. Sci. 1984, 25, 268. (c) Seamon, K. B.; Daily, J. W. Adv. Cyclic Nucleotide protein Phosphorylation Res. 1986, 20, 1.

3. (a) Khandelwal, Y.; Rajeshwari, K.; Rajagopalan, R.; Swamy, L.; Dohadwalla, A. N.; deSouza, N. J.; Rupp, R. H. J. *Med. Chem.* **1988**, *31*, 1872. (b) Tatee, T.; Narita, A.; Narita, K.; Izumi, G.; Takahira, T.; Sakurai, M.; Fujita, A.; Hosono, M.; Yamashita, K.; Enomoto, K.; Shiozawa, A. *Chem. Pharm. Bull.* **1996**, *44*, 2274.

4. Lal, B.; Gangopadhyay, A. K.; Aroskar, V. A.; Dohadwalla, A. N.; Rupp, R. H. Eur. Pat. EP293814; *Chem. Abstr.* **1989**, *110*, 213140x.

5. Schnabel, E. Liebigs. Ann. Chem. 1967, 702, 188.

6. Halpern, B.; Nitecki, D. E. Tetrahedron Lett. 1967, 3031.

7. Barlos, K.; Papaioannou, D.; Theodoropoulos, D. J. Org. Chem. 1982, 47, 1324.

8. Zervas, L.; Theodoropoulos, D. M. J. Am. Chem. Soc. 1956, 78, 1359.

Bhat, S. V.; Dohadwalla, A. N.; Bajwa, B. S.; Dadkar, N. K.; Dornauer, H.; deSouza, N. J. J. Med. Chem. 1983, 26, 486.