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INTRAMOLECULAR RADICAL COUPLING OF A PHENOLIC ENOLATE :
OXIDATIVE FRAGMENTATION OF THE SPIRODIKETONE INTERMEDIATE
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Abstract - Ferricyanide oxidation of the dianion of the phenolic B-diketone 6b in basic condi-
tions effects intramolecular radical coupling to form the spirocyclic diketone 7 which leads to

the hydroxy tetralone 8 via an oxidative fragmentation process.

Whereas the oxidative coupling of phenols through phenoxy radical intermediates is a well
egtablished blosynthetic and synthetic pathway,l the intramolecular coupling of phenolic enolates by
the action of one-electron oxidants is extremely rare. One such example 1s oxidative cyclization of
the phenolic indandione 1, leading to the spiro(4,4)nonanedione 2 model for the spirocyclic core of
the antitumor antibiotic fredericamycin A,2 More recently, the oxidative cyclization of the phenolic

nitronate 3 to yleld the tropone 5 by way of the spirocyclic intermediate 4 has been described.3
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In a study of the scope of this potentially important radical cyclization method we have
examined the chemistry of certain phenolic 1,3-cyclohexanediones. We now report an unexpected
fragmentation sequence (6b + 8) during our study of the ferricyanide oxidation of such a system.

The m-methoxyphenyl acids 9a and 9b were transformed by the procedures of Moreau and Rouessac4
into the corresponding SEM bromides 10a and 10b respectively. Since direct C-alkylations of 1,3-
cyclohexanedione enolates by the bromides 10 were unsuccessful, an alternative cyclohexanedione
synthon equivalent was employed. The lithium derivative of 1,5-dimethoxy-1,4-cyclohexadiene was
alkylated by the bromides 10a and 10b according to the precedent of Piers and Grierson5 to yield the

intermediates lla and 11b, which on deprotection (HMPA, 3 eq n-Bu,NF, 40°C, 2 h) followed by careful

acid hydrolysis (acetonme, 1 M HCl, argon, RT, 1.5 h) gave rispeccively the sensitive, enolic
1,3-cyclohexanediones 6a and 6b in overall yilelds of 23 % and 51 % from 10. The structures of 6a and
6b were confirmed by IR, NMR, mass spectra,6 and conversion to the stable diacetates7 12a and 12b
(Ac20 - Pyr, argon, RT, lh).

Reaction of 6b in 0.5 M NaZCO3 with 6 molar equiv., of 0.5 M K3Fe(CN)6 for 3 h at 0°C, then 14 h
at 25°C followed by acidification with citric acid gave on extraction and separation with prepa-

8
rative stlica gel TLC (AcOEt/hexane 75/25), a single crystalline product 8 in 25-30 % yileld .
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Formation of the tetralone 8 requires an initial oxidative cyclization of 6b to the

spirodiketone 7. It is likely that in the basic medium this will undergo a retro-Claisen scission of

the nonenolizable 1,3~diketone unit to yield the enolate 13, which ultimately react with oxygen to

give the hydroperoxide 14. Subsequent intramolecular fragmentation9
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When similar conditions were applied to the lower homologue 6a, we were unable to isolate any

identifiable product. The use of varying pH or of other oxidants (e.g., NaOH, O,IN/KBFe(CN)6 or

VOC13/ether) upon either 6a or 6b likewise failed to give an isolable product.

The above results indirectly extend the role of phenolic enolate oxidative cyclization to a

phenolic g-diketone, but they also show an evident limitation for these systems.
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