

## Organocatalytic Modified Guareschi–Thorpe Type Regioselective Synthesis: A Unified Direct Access to 5,6,7,8-Tetrahydroquinolines and Other Alicyclic[b]-Fused Pyridines

Pradeep K. Jaiswal,<sup>†</sup> Vashundhra Sharma,<sup>†</sup> Manas Mathur,<sup>‡</sup> and Sandeep Chaudhary<sup>\*,†</sup>

<sup>†</sup>Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur-302017, India

<sup>‡</sup>Department of Botany, University of Rajasthan, Jawaharlal Nehru Marg, Jaipur-302004, India

**Supporting Information** 



**ABSTRACT:** An unprecedented organocatalytic, regioselective, modified Guareschi–Thorpe type protocol toward the modular synthesis of 5,6,7,8-tetrahydroquinolines 22a-g and other alicyclic[b]-fused pyridines 23-28 via the identification of Chitosan as a heterogeneous catalyst is reported. This novel strategy is operationally simple and showed a wide range of functional group tolerance and substrate compatibility. The proposed mechanistic pathway involves an imine-enamine cascade approach for the synthesis of structurally diverse alicyclic[b]-fused pyridine heterocycles. The gram scale synthesis and identification of a new class of antifungal molecules 29-31 emphasize the practicality of this method.

**O** rganocatalysis has received tremendous attention from synthetic chemists to catalyze transition-metal-free reactions to construct various natural products, pharmaceuticals, and organic materials during the past two decades because of its several advantages such as selectivity, safety, ease of handling, and economic perspectives.<sup>1</sup> Pyridine-nucleusincluding substituted alicyclic[b]-fused pyridines, as a part or as a whole, constitute the core of a large family of natural products, bioactive pharmaceuticals, vitamins, alkaloids, chiral ligands, and functional materials<sup>2,3</sup> and are endowed with a wide range of biological activities<sup>4</sup> as shown by a few pharmaceutically privileged molecules 1a-e (Figure 1).

Few methodologies for the synthesis of functionalized alicyclic[b]-fused pyridines have been reported via the construction of the pyridine ring either on alicyclic ring systems or via the construction of the alicyclic ring on the



Figure 1. Few selected examples of pharmaceutically privileged molecules 1a-e having functionalized alicyclic[b]-fused pyridines.

pyridine ring. While the latter route involves routine chemistry, the former route is quite challenging, as the construction of highly substituted pyridine is required to be built on the alicyclic ring. Almost a century ago, the Guareschi-Thorpe method was the landmark reaction for pyridine synthesis, which involves the condensation of the cyanoacetic ester with an acetoacetic ester in the presence of ammonia [Scheme 1A].<sup>5</sup> Since then, several methodologies have been reported in the literature to construct the alicyclic[b]-fused pyridines using cyclic ketones or its analogues.<sup>6</sup> Earlier, the synthesis of alicyclic[b]-fused pyridine was carried out via Pd-catalyzed oxidation of hydroxyenaminones followed by subsequent cyclization/aromatization [Scheme 1B(i)].<sup>7a</sup> Functionalized 5,6,7,8-tetrahydroquinoline i.e, a cyclohexane[b]-fused pyridine, was obtained in a lower yield when 2-methylcyclohexanone oxime was treated with diphenylacetylene in the presence of an iridium catalyst [Scheme 1B(ii)].<sup>7b</sup> The desired skeleton could also be constructed when cyclic/acyclic 1,3dicarbonyl compounds react with activated  $\alpha$ ,  $\beta$ -unsaturated ketone in the presence of NH<sub>4</sub>OAc using K<sub>5</sub>CoW<sub>12</sub>O<sub>40</sub>·3H<sub>2</sub>O as the catalyst [Scheme 1B(iii)].<sup>7c</sup> A metal-free, MW-assisted four-component strategy using arylaldehydes, cyclohexanone,

Received: August 1, 2018



ammonium acetate, and *N*-phenacylpyridinium bromide as an activated ketone has also been utilized to construct  $\operatorname{alicyclic}[b]$ -fused pyridines [Scheme 1B(iv)].<sup>7d</sup> However, all the previously reported protocols suffer from serious drawbacks, such as the use of expensive and toxic transition metal catalysts, harsh reaction conditions, multistep synthesis, activated carbonyl substrates, lower yields, and a limited substrate scope. Hence, the development of a more general, operationally simple, and environmentally benign method for the synthesis of alicyclic-[b]-fused pyridine motifs is highly desirable.

Herein, we report the identification of a commercially available chitosan as heterogeneous organocatalyst, which catalyzes an unprecedented, regioselective, three-component condensation reaction of an unactivated ketone, a diketo-ester and NH<sub>4</sub>OAc in 1,4-dioxane as solvent at 80 °C which furnished alicyclic[b]-fused pyridines 22-31, with a broad range of functional group tolerance and substrate compatibility [Scheme 1B(v)]. To the best of our knowledge, this is the first report of an organocatalyzed modified Guareschi–Thorpe type regioselective synthesis of 5,6,7,8-tetrahydroquinolines and other novel alicyclic[b]-fused pyridines.

To develop a modified Guareschi–Thorpe type condensation for the synthesis of alicyclic[b]-fused pyridines, we started our initial investigation on the model reaction using methyl 2,4-dioxo-4-phenylbutanoate **19a**, NH<sub>4</sub>OAc **20**, and cyclohexanone **21b** as an unactivated ketone dissolved in EtOH, for the synthesis of methyl 2-phenyl-5,6,7,8-tetrahydroquinoline-4carboxylate **22a** via screening of various catalysts (Table 1).



Table 1. Optimization Study: Identification of Catalyst<sup>a</sup>

| s. no. | solvent | catalyst           | mol<br>(%)      | temp<br>(°C) | time<br>(h) | yield of $22a^{c}$ (%) | yield of<br>19aa <sup>c</sup><br>(%) |
|--------|---------|--------------------|-----------------|--------------|-------------|------------------------|--------------------------------------|
| 1      | EtOH    | -                  | -               | 80           | 4           | trace <sup>b</sup>     | 92                                   |
| 2      | EtOH    | DBU                | 30              | 80           | 4           | 46                     | 48                                   |
| 3      | EtOH    | DABCO              | 30              | 80           | 4           | 37                     | 52                                   |
| 4      | EtOH    | Et <sub>2</sub> NH | 30              | 80           | 4           | 32                     | 53                                   |
| 5      | EtOH    | L-proline          | 30              | 80           | 4           | 34                     | 57                                   |
| 6      | EtOH    | piperidine         | 30              | 80           | 4           | 28                     | 60                                   |
| 7      | EtOH    | DMAP               | 30              | 80           | 4           | 41                     | 54                                   |
| 8      | EtOH    | Et <sub>3</sub> N  | 30              | 80           | 4           | 21                     | 68                                   |
| 9      | EtOH    | pyrolidine         | 30              | 80           | 4           | 48                     | 44                                   |
| 10     | EtOH    | chitosan           | 30 <sup>d</sup> | 80           | 4           | 65                     | 32                                   |

<sup>*a*</sup>Reaction conditions: **19a** (0.20 mmol), **20** (0.30 mmol), **21b** (0.30 mmol), and catalysts (mol %) were dissolved in EtOH and heated at 80 °C temperature under a  $N_2$  atmosphere for 4 h. <sup>*b*</sup>Not isolated. <sup>*c*</sup>Isolated yield. <sup>*d*</sup>Performed with chitosan catalyst 60 mg (30 wt %, w.r.t. substrate **19a**).

As NH<sub>3</sub> was used as a nitrogen source as well as a base in Guareschi-Thorpe pyridine synthesis, we also planned to perform our reaction using NH4OAc, which will provide a basic medium and also act as a nitrogen source. Unfortunately, it did not furnish the desired product 22a (entry 1). Product 19a exists in equilibrium with either 19aa or 19ab under the reaction medium. While 19aa, the unreacted form of 19a, was isolated in our reaction conditions, 19ab was not detected at all. It prompted us to investigate this reaction using other various primary, sec- and tert-amines (Table 1; entries 2-9). A number of bases such as DBU, DABCO, Et<sub>2</sub>NH, L-proline, Piperidine, DMAP, Et<sub>3</sub>N, pyrrolidine, etc. were used in catalytic amounts (30 mol %) under reflux conditions in EtOH which furnished 22a in 21-52% yields (Table 1, entries 2-9). Its other regioisomer, 22b, was not detected at all. However, 19aa, the unreacted form of 19a, was isolated in 44-68% yields. The structures of 22a and 19aa were fully characterized by ESI-MS, <sup>1</sup>H NMR, <sup>13</sup>C NMR, FT-IR, and HRMS data. Furthermore, biopolymer chitosan has been well reported in literature which has been utilized as a heterogeneous catalyst in organic synthesis.<sup>8</sup> Therefore, we also carried out our model reaction using chitosan as a heterogeneous organocatalyst. Surprisingly, 22a was obtained in 65% yield (Table 1, entry 10).

We further optimized the reaction efficacy by using chitosan in different solvents (Table 2, entries 1-8); consequently, 1,4dioxane was found to be the best solvent which afforded **22a** in 70% yield (Table 2, entry 6). In contrast, the reaction did not furnish **22a** in H<sub>2</sub>O (Table 2, entry 8).

Then, the effect of catalyst loading was studied on the model reaction (Table 2, entries 9-12). It was found that an increase in chitosan loading (80 mg) decreases the yield of **22a** (Table 2, entry 9). Contrary to this, a decrease in chitosan loading (40

# Table 2. Optimization Study: Screening of Reaction Parameters for the Synthesis of $22a^{a}$

| Û      | 0 0<br>OMe<br>+ NO.<br>19a | Ac + chitos<br>21b | san, solvent | 22a      | + 19aa<br>ed 20, 21b   |
|--------|----------------------------|--------------------|--------------|----------|------------------------|
| s. no. | solvent                    | amount (mg)        | temp (°C)    | time (h) | yield <sup>b</sup> (%) |
| 1      | EtOH                       | 60                 | 80           | 4        | 65                     |
| 2      | CHCl <sub>3</sub>          | 60                 | 80           | 4        | 28                     |
| 3      | MeOH                       | 60                 | 80           | 4        | 63                     |
| 4      | DMF                        | 60                 | 80           | 4        | 52                     |
| 5      | DMSO                       | 60                 | 80           | 4        | 47                     |
| 6      | 1,4-dioxane                | 60                 | 80           | 4        | 70                     |
| 7      | toluene                    | 60                 | 80           | 4        | 20                     |
| 8      | H <sub>2</sub> O           | 60                 | 80           | 4        | 00                     |
| 9      | 1,4-dioxane                | 80                 | 80           | 4        | 56                     |
| 10     | 1,4-dioxane                | 40                 | 80           | 4        | 68                     |
| 11     | 1,4-dioxane                | 30                 | 80           | 4        | 77                     |
| 12     | 1,4-dioxane                | 20                 | 80           | 8        | 61                     |
| 13     | 1,4-dioxane                | 30                 | 80           | 8        | 80                     |
| 14     | 1,4-dioxane                | 30                 | 80           | 10       | 87                     |
| 15     | 1,4-dioxane                | 30                 | 100          | 12       | 81                     |
| 16     | 1,4-dioxane                | 30                 | 80           | 24       | 79                     |

<sup>*a*</sup>Reaction conditions: **19a** (0.20 mmol), **20** (0.30 mmol), **21b** (0.30 mmol), and chitosan (as given amounts in table) were dissolved in solvents (as given in table) and heated at the given temperature under a  $N_2$  atmosphere at given time. <sup>*b*</sup>Isolated yields after two steps. In the second step, the recovered intermediate **19aa** was again subjected to the same reaction conditions along with **20** and **21b**.

mg) increases the product yield to 68% (Table 2, entry 10). On further decreasing the chitosan loading to 30 mg, it was observed that a 30% catalyst loading was found to be the optimum condition for obtaining the product in 77% yield (Table 2, entry 11). A further decrease in chitosan loading does not have beneficial effects (Table 2, entry 12). Then, we studied the optimization of temperature and time (Table 2; entries 13–16); it was found that an 80 °C temperature and a 10 h time are optimal. Thus, overall, a catalyst loading of 30 mg of chitosan in a 1,4-dioxane solvent at 80 °C for 10 h was found to be the best reaction conditions for the synthesis of 22a (Table 2, entry 14). The chitosan can be reused up to the fourth cycle with a minor decrease in yield indicating its catalytic efficiency (see Table 1 in the Supporting Information (SI)).

To explore the substrate scope and generality of the present method, various substituted aromatic/heteroaromatic/aliphatic diketo-esters 19a-n, different cyclic (4/5/6/7/8-membered)/ acyclic/aromatic carbonyl compounds 21a-f, and 20 were subjected to the optimized reaction conditions which furnished the alicyclic[b]-fused pyridines 22-31 in up to 89% yields (Scheme 2). The present method proceeds smoothly for the synthesis of a variety of functionalized alicyclic[b]-fused pyridines. Initial observation showed that the different diketo-esters 19a-j react with various cyclic ketones 21a-d in the presence of NH<sub>4</sub>OAc 20 under the optimized conditions to afford 22-28 in excellent yields. The seven- and eightmembered cyclic ketones, i.e. 21c-d, furnished the corresponding alicyclic[b]-fused pyridine 24-25 in 71-76% yields.

Similarly, reaction of heteroaromatic/alicyclic diketoesters 19k-m with cyclic ketones 21a-c along with 20 under

Scheme 2. Substrate Scope<sup>*a,b*</sup>



<sup>*a*</sup>Reaction conditions: (a) **19a–n** (0.20 mmol), **20** (0.30 mmol), **21a–e** or **21fa–fb** (0.30 mmol), chitosan (30 mg, 15 wt % w.r.t. **19a–n**, respectively), 1,4-dioxane, 80 °C, N<sub>2</sub> atmosphere. <sup>*b*</sup>Isolated yields. <sup>*c*</sup>Not isolated. <sup>*d*</sup>Inseparable complex mixture. <sup>*e*</sup>For preparation of **36**, see section 1.2.5 in the SI.

optimized conditions furnished 29-31 in 41-72% yields. The generality of the reaction was also attempted using highly constrained cyclobutanone 21e along with 19a and 20; unfortunately, 32 was formed in traces (<5%) but could not be isolated. It infers that the reaction proceeds smoothly with aromatic and alicyclic diketo esters 19a-j and 19m, with nonconstrained cyclic ketones 21a-d. However, it proceeded slightly in low yields with heteroaromatic diketoesters 19k-m. In contrast, the reaction did not furnished 33 with aliphatic diketoester 19n. Also, 34 was not isolated when 21fa, 19g, and 20 were treated under the optimized reaction conditions, but the crude <sup>1</sup>H NMR spectra showed an inseparable complex mixture. Moreover, the reaction of 19g with 21fb and 20 did not furnish 35 due to the lower reactivity of 21fb in comparison with cyclic ketones 21a-d. Overall, the reaction proceeds smoothly with nonconstrained cyclic ketones as compared to constrained/acyclic ones. Aromatic diketoesters 19a-j were found to be the most suitable substrate to generate a variety of 2-aryl substituted alicyclic [b]-fused pyridines (Scheme 2).

To illustrate the type of mechanism involved, control experiments were carried out under optimized reaction conditions in the presence of free-radical scavengers such as



Figure 2. Plausible mechanism.

Tempo and BHT, which furnished **22a** in up to 84% and 79% yields, respectively. This indicates the involvement of an ionic mechanism rather than a free-radical mechanism (see SI; section 1.2.4).

Moreover, isonicotinic acid (regioisomer of vitamin  $B_3$ ) and its analogues are present in a large number of natural products and drug candidates;<sup>4a,9</sup> the alicyclic[*b*]-fused isonicotinic acid derivative **36** was synthesized by the hydrolysis of compound **22a** using LiOH·H<sub>2</sub>O (see SI; section 1.2.5). The versatility of the method was demonstrated by performing a gram scale synthesis of **22a**, which was obtained in 79% yield (see SI; section 4).

A plausible mechanism for the synthesis of 22a involves imine-enamine cascade reactions (Figure 2). It is to be noted that 19a exists in equilibrium with either more stable 19aa (isolated) or less stable 19ab (not detected) under an acidic medium of acetic acid generated from ammonium acetate. The reaction starts with the activation of compound 19aa and 19ab with chitosan via either path A or path B to generate iminium ion intermediate I or IA, respectively. Then, the leftover carbonyl group will be immediately attacked by enamine 21ba (which is formed *in situ* from **21b** and NH<sub>4</sub>OAc **20**) and forms more favorable intermediates II (less steric hindrance) preferentially over less favored IIA (due to steric hindrance between the cyclohexyl and phenyl moiety). Then, the sequence of reactions, i.e., removal of water, deprotonation of amines, abstraction of enolizable proton, and cyclization, furnished the desired product 22a with the release of the catalyst (path A). On the other hand, 22b was not isolated in our reaction. It is anticipated that steric hindrance between the cyclohexyl group and phenyl group destabilizes the formation of transition state IIA (path B). Therefore, this reaction occurs in a regioselective manner exclusively via path A (Figure 2).

Compounds **29–31** were assessed for their antifungal activity *in vitro* against *Aspergillus niger* and *Candida albicans* fungal strains.<sup>10</sup> The indole-based analogue **29** showed promising antifungal activity (MIC =  $6.25 \ \mu g/mL$ ) *in vitro* against the *Aspergillus niger* strain compared to Ketoconazole (MIC =  $12.5 \ \mu g/mL$ ; for details, see SI).

In conclusion, our study uncovered an unprecedented organocatalyst, regioselective, modified Guareschi–Thorpe type protocol for the modular synthesis of structurally diverse 5,6,7,8-tetrahydroquinolines 22a-g and alicyclic[b]-fused

pyridines 23-31. With the operational simplicity, functional group compatibility, low catalyst loading, and reusability of the catalyst, the present methodology has substantially expanded the scope of fused pyridine derivatives accessible from readily available cyclic ketones and diketoesters as starting substrates. Also, the gram-scale synthesis and identification of new antifungal molecules (29-31) emphasize the practicality of this methodology. These findings disclosed a new synthetic route for the green synthesis of structurally diverse alicyclic[b]-fused pyridine heterocycles.

#### ASSOCIATED CONTENT

#### **S** Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b02132.

Experimental details and characterization data, <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of all compounds **19aa**, **22–31**, and **36** (PDF)

#### AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: schaudhary.chy@mnit.ac.in. ORCID ©

### Sandeep Chaudhary: 0000-0002-1444-3895

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

S.C. acknowledges CSIR, New Delhi for CSIR-EMR Grant [02(0189)/14/EMR-II]; DST, New Delhi for DST-RFBR Indo-Russian Joint Research Project (INT/RUS/RFBR/P-169); and SERB, New Delhi for a Start-up Research Grant (Grant No. CS-037/2013). V.S. and P.K.J. thank MNIT, Jaipur and CSIR, New Delhi, respectively for fellowships. Materials Research Centre (MRC), MNIT, Jaipur is gratefully acknowl-edged for providing analytical facilities.

#### REFERENCES

(1) List, B. Chem. Rev. 2007, 107, 5413-5415 and references cited therein.

(2) (a) Lin, Y.; Yang, X.; Pan, W.; Rao, Y. Org. Lett. **2016**, *18*, 2304–2307 and references cited therein. (b) Kiuru, P.; Yli-Kauhaluoma, J. Heterocycles in Natural Product Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp 267–297.

(3) (a) Jones, G. Comprehensive Heterocyclic Chemistry II; Elsevier Science: Oxford, 1996; Vol. 5.05, pp 167–243. (b) Henry, G. D. Tetrahedron 2004, 60, 6043–6061. (c) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem. Soc. 2007, 129, 10096–10097. (d) Chelucci, G.; Craba, S.; Saba, A.; Soccolini, F.; Sotgiu, G. J. Mol. Catal. A: Chem. 2000, 164, 173–179.

(4) (a) Hu, Y.-Q.; Zhang, S.; Zhao, F.; Gao, C.; Feng, L.-S.; Lv, Z.-S.; Xu, Z.; Wu, X. Eur. J. Med. Chem. 2017, 133, 255-267.
(b) Yamada, O.; Ogasawara, K. Tetrahedron Lett. 1998, 39, 7747-7750.
(c) Wagstaff, A. J.; McTavish, D. Drugs Aging 1994, 4, 510-540.
(d) Deeks, E. D.; Keating, G. M. CNS Drugs 2010, 24, 65-84.
(e) Kay, G. G.; Harris, A. G. Clin. Exp. Allergy 1999, 29, 147-150.
(5) (a) Guareschi, M. R. Accad. Sci. Torino II 1896, 46 (7), 11.
(b) Baron, H.; Remfry, F. G. P.; Thorpe, Y. F. J. Chem. Soc., Trans. 1904, 85, 1726-1761.

(6) (a) Brandt, W.; Mologni, L.; Preu, L.; Lemcke, T.; Gambacorti-Passerini, C.; Kunick, C. *Eur. J. Med. Chem.* 2010, 45, 2919-2927.
(b) Dyachenko, V. D.; Chernega, A. N. *Russ. J. Org. Chem.* 2006, 42, 567-576.
(c) Kelly, T. R.; Lebedev, R. L. *J. Org. Chem.* 2002, 67, 2197-2205.
(d) Jiang, B.; Li, C.; Tu, S.-J.; Shi, F. *J. Comb. Chem.* 2010, 12, 482-487.
(e) Abbiati, G.; Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. *J. Org. Chem.* 2003, 68, 6959-6966.
(f) Dediu, O. G.; Yehia, N. A. M.; Oeser, T.; Polborn, K.; Muller, T. J. *J. Eur. J. Org. Chem.* 2005, 2005, 1834-1848.
(g) Mulamba, T.; El Boukili-Garré, R.; Séraphin, D.; Noé, E.; Charlet-Fagnère, C.; Hénin, J.; Laronze, J.; Sapi, J.; Barret, R.; Laronze, J.-Y.; Lévy, J. *Heterocycles* 1995, 41, 29-36.

(7) (a) Pita, B.; Masaguer, C. F.; Ravina, E. Tetrahedron Lett. 2002, 43, 7929–7932. (b) Parthasarathy, K.; Cheng, C.-H. J. Org. Chem. 2009, 74, 9359–9364. (c) Kantevari, S.; Chary, M. V.; Vuppalapati, S. V. N.; Lingaiah, N. J. Heterocycl. Chem. 2008, 45, 1099–1102. (d) Yan, C.-G.; Wang, Q.-F.; Cai, X.-M.; Sun, J. Cent. Eur. J. Chem. 2008, 6, 188–198.

(8) (a) Siddiqui, Z. N. Tetrahedron Lett. 2015, 56, 1919–1924 and references cited therein. (b) Baig, R. B. N.; Varma, R. S. Green Chem. 2013, 15, 1839–1843. (c) Maleki, A.; Kamalzare, M.; Aghaei, M. J. Nano. Chem. 2015, 5, 95–105.

(9) (a) Korczynska, M.; Le, D. D.; Younger, N.; Gregori-Puigjané, E.; Tumber, A.; Krojer, T.; Velupillai, S.; Gileadi, C.; Nowak, R. P.; Iwasa, E.; Pollock, S. B.; Torres, I. O.; Oppermann, U.; Shoichet, B. K.; Fujimori, D. G. *J. Med. Chem.* **2016**, *59*, 1580–1598. (b) Luo, G.; Chen, L.; Burton, C. R.; Xiao, H.; Sivaprakasam, P.; Krause, C. M.; Cao, Y.; Liu, N.; Lippy, J.; Clarke, W. J.; Snow, K.; Raybon, J.; Arora, V.; Pokross, M.; Kish, K.; Lewis, H. A.; Langley, D. R.; Macor, J. E.; Dubowchik, G. M. *J. Med. Chem.* **2016**, *59*, 1041–1051.

(10) (a) Reddy, P. M.; Ho, Y. P.; Shanker, K.; Rohini, R.; Ravinder, V. *Eur. J. Med. Chem.* **2009**, *44*, 2621–2625. (b) Cruickshank, R.; Duguid, J. P.; Marmion, B. P.; Swain, R. H. A. *Medical Microbiology, Churchill Livingstone*, 12th ed.; Churchill Livingstone: Edinburgh, London, and New York, 1975; Vol. *II*, pp 96–150.