IN VITRO CONVERSION OF HUMULENE TO (\pm) -PENTALENOLACTONE G, H, AND PENTALENOLACTONE

Toshikazu OHTSUKA, Haruhisa SHIRAHAMA, and Takeshi MATSUMOTO * Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060

Pentalenolactone (PL), PLH, and PLG were derived from 3,6-epoxy -3,6-seco-7(13)-protoilluden-10-ol which in turn was obtained from humulene. Conformation of PL's was studied by NMR.

Because of its antibiotic properties, the biosynthesis and chemical synthesis of pentalenolactone $(1)^{1}$ has been extensively studied. The compound was shown to be biosynthetically derived from humulene $(2)^{2}$ through several intermediates, pentalenene (3), (3) pentalenolactone (PL) E (5), (5) F (6), (7), (7) and H (8), (7)as well as pentalenic acid $(4)^7$ (Scheme 1). Biomimetic conversions of 2 to 3,8) 4,9) 5,10) and 6^{10}) in racemic forms have recently been achieved in this laboratory. We should like to report here conversion of 2 to (\pm) -methyl esters of PLG 7, PLH 8, and PL 1.

The hydroxyether 9, obtained from humulene previously, 9) was converted to 12¹¹⁾ (mp 59-62°C) in 65% yield by successive treatments under the following conditions: 1) TMSCl/Et₃N/CH₂Cl₂/15 min at 0 $^{\circ}$ C \rightarrow 1 h at rt; 2) Li/EtNH₂/THF/-78 $^{\circ}$ C/3 h; 3) MeI/NaH/THF/0 $^{\circ}$ C \rightarrow reflux for 1 h, 4. HCl/MeOH-Et₂O/0 $^{\circ}$ C/1 h; 5) BzCl/Pyr/30 min at 0 $^{\circ}C\rightarrow$ 1 h at rt. The benzoate 12 was transformed to 30 through the following pathway similar to the procedure employed in the conversion 10) of 10to PLE (5).

 $12 \rightarrow 13^{11}$: 1) B₂H₆/THF/0 °C/30 min; 2) H₂O₂/3 mol dm⁻³-NaOH; 3) Jones oxd. at 0 °C, mp 95-98 °C, 79%. $13\rightarrow14^{11}$: 1) $HCO_2H/45$ °C/36 h; 2) $Na_2CO_3/MeOH-H_2O/rt/5$ h, mp 116-118 °C, 38%. 14 \rightarrow 15+16: 1) B₂H₆/THF/30 min at 0 °C \rightarrow 1.5 h at rt; 2) H₂O₂/ NaOH, 15^{11} (mp 60-62 °C, 78%) and 16^{11} (18%). $15(16) \rightarrow 17(18)$: $HCO_2H/85$ °C/48 h,

Scheme 1. Biosynthetic pathway to pentalenanoids.

17¹¹) (mp 105-107 °C, 71%), 18¹¹) (mp 68-70 °C, 37%). 17(18) \rightarrow 19(20): SeO₂/EtOH /refl./48 h, 19¹¹) (85%), 20¹¹) (79%). 19(20) \rightarrow 21(22): MnO₂/NaCN/AcOH/MeOH/rt/24 h, 21¹¹) (mp 128-130 °C, 87%), 22¹¹) (91%). 21(22) \rightarrow 23(24): Jones oxd. at 0 °C, 23¹¹) (80%), 24¹¹) (mp 124-127 °C, 78%). 23(24) \rightarrow 25 \rightarrow 26¹¹): 1) TMSOTf/Et₃N/benzene/rt/10 min; 2) NBS/THF/0 °C/5 min, 60% from 23, 62% from 24. 26 \rightarrow 27+28: TMSOTf/Et₃N/NaHCO₃/benzene/rt/24 h, 27¹¹) (45%) and 28¹¹) (33%). 28 \rightarrow 27¹¹): TMSOTf /(TMS)₂NH/benzene/rt/2 h, 84%, 27 \rightarrow 29 \rightarrow 30¹¹): 1) mCPBA/hexane/30 min at -15 °C/2 h at rt; 2) NaIO₄/t-BuOH-H₂O/rt/4 h; 3) NaBH₄/EtOH/15 min at rt; 4) HCl/rt/2 h, 30%.

Pentalenolactone H methyl ester (32) was obtained from 30 by hydrolysis (\rightarrow 31) (1) LiOH/THF-H₂O/55 °C/24 h; 2) HCl/rt/2 h), followed by reesterification of the carboxyl group (CH₂N₂/ether/0 °C), and epoxydation (1) H₂O₂/NaHCO₃/THF-MeOH-H₂O/rt/24 h; 2) HCl) in 10% yield along with 20% yield of its stereoisomer 33.¹¹⁾ Jones oxidation of 32 at 0 °C gave pentalenolactone G methyl ester (34). The ¹H NMR spectra of 32 and 34 were identical with those of esters originated from the natural products.⁶,7) Treatment of 31 with CBr₄ and PPh₃ in benzene at reflux temperature for 30 min afforded a properly rearranged product 35 (16%) and a bromide 36¹¹⁾ (70%). Since compound 35 has already been led to (±)-pentalenolactone (1) by Danishefsky et al.^{1b)} and the ¹H NMR of our product coincided with the reported spectrum, the present synthesis means conversion of humulene to (±)-PL. The 1,2-shift of one methyl of the gem-dimethyl group may be operative also in biosynthesis of 1.

Comparison of the NMR data of PLF and PLH with those of their epimers (Table 1), in particular $J_{5,6}$ and $J_{9,10}$, coupled with the well known coplanarity of lactone rings, indicated that PLF and epi-PLH (group A) took a very similar skeletal conformation approximated by A^{12}) while epi-PLF, PLH, and PLG (group B) adopted another molecular shape expressed by B. In conformity with this assignment, signals due to H_1 of the group A compounds and those for H_9 of the group B compounds appeared at higher field than the corresponding peaks of their isomers, by the shielding effect of the oxirane ring. The NMR data of PL-Me (H_5 , δ 4.55, 2H, d, J=3.0; H_9 , 3.35, 1H, ddd, J=9.0, 3.0, 2.7; H_{10} , 2.80, 1H, dqq, J=9.0, 7.5. 1.2) and epi-PL-Me (H_{5a} , δ 4.35, 1H, dd, J=12, 5; H_{5b} , 4.6, 1H, dd, J=12, 3; H_9 , 3.65, 1H, m, band width 30 Hz, Ref. 1b) suggest that both compounds take a conformation similar to A. It is of interest that conformations of this class of compounds are greatly influenced by the substituent at C-10. This seems to be deserving of further study.

Table 1. ¹H NMR Spectra of pentalenolactones

Table	1. 'H NMR Spec	ctra of pentalenola	ctones					
	PLF-Me ^{a)} (A	A) epi-PLF-M	epi-PLF-Me ^{a)} (B)		PLH-Me ^{a)} (B)		epi-PLH-Me ^{a)} (A)	
b) 14 15	ppm J 1.01 3H s 1.03 3H s	ppm 1.04 6H s	J	ppm 1.01 3H s 1.03 3H s	J	ppm 0.97 3H s 1.04 3H s	J	
1 10	1.46 2H s 1.53 1H d 12		13.5 13.5 13, 6	1.69 1H d 2.07 1H d 3.56 1H d	14 14 6	1.51 1H d 1.74 1H d 3.61 1H s	13 13	
12 9 6 7 ⁺ 5		2.95 1H d	13, 9 4.5 4.5 9, 6, 3 9, 6, 3 11.5, 9 11.5, 6	2.96 1H d 3.08 1H d 2.83 1H dt 3.52 1H ddt 3.77 3H s 4.18 1H dd 4.89 1H dd 6.99 1H t	4.5 4.5 6, 3 9, 6, 3 12, 9 12, 6 2.5	3.13 1H d 3.22 1H d 3.29 1H t 3.44 1H tt 3.78 3H s 4.50 1H dd 4.72 1H dd 6.95 1H t	5 5 3 3.5, 3 12, 3.5 12, 3.5	
b) 14 15 1 12 9 6 7 ⁺ 5	PLG-Me ⁶) (ppm 1.12 3H s 1.15 3H s 2.06 1H d 2.24 1H d 2.97 1H d 3.14 1H d 3.19 1H t 3.72 1H dddd 3.76 3H s 4.21 1H dd 4.96 1H dd	(B) 14.3 14.3 4.5 4.5 4.5 3.0 9.7, 6.0, 3.0, 2.0 11.5, 9.7 11.5, 6.0	H H OHz H 9 2 H 5 3 -3Hz 5 H	СООМе	H. 6Hz	H 9Hz	СООМе	
8	6.85 1H dd	3.0, 2.0						

- a) Measured by a JEOL JNM GX-500 instrument. Another spectrum was taken by a 100 MHz equipment.
- b) Assignment. 7^+ represents an ester methyl group.

We thank Dr. Seto (Tokyo Univ.) for the ¹H NMR spectra of pentalenolactone G and H and Prof. Danishefsky (Yale Univ.) for the ¹H spectrum of compound 34.

References

- 1) a) S. Takeuchi, and Y. Ogawa, and H. Yonehara, Tetrahedron Lett., 1969, 2737; b) D. G. Martin, G. Slomp, S. Mizsak, D. J. Duchamp, and C. G. Chidester, ibid., 1970, 4901. Synthesis: c) S. Danishefsky, M. Hirama, K. Gombatz, T. Harayama, E. Berman, and P. Schuda, J. Am. Chem. Soc., 100, 6536 (1978); 101, 7020 (1979); d) W. H. Parsons, R. H. Schlessinger, and M. L. Quesada, ibid., 102, 889 (1980).
- 2) D. E. Cane, "Biosynthesis of Sesquiterpenes," in "Biosynthesis of Isoprenoid Compounds," ed by J. W. Porter and S. L. Spurgeon, Wiley, New York (1981), pp. 283-374; D. E. Cane and A. M. Tillman, J. Am. Chem. Soc., 105, 122 (1983); Refs. 3-8.
- 3) H. Seto and H. Yonehara, J. Antibiot., 33, 92 (1980).
- 4) D. E. Cane and T. Rossi, Tetrahedron Lett., 1979, 2973.
- 5) A. M. Tillman and D. E. Cane, J. Antibiot., 36, 170 (1983).
- 6) H. Seto, T. Sasaki, H. Yonahara, and J. Uzawa, Tetrahedron Lett., 1978, 923.
- 7) H. Seto, T. Sasaki, J. Uzawa, S. Takeuchi, and H. Yonehara, Tetrahedron Lett., 1978, 4411.
- 8) Y. Ohfune, H. Shirahama, and T. Matsumoto, Tetrahedron Lett., 1976, 2869; S. Misumi, T. Ohtsuka, Y. Ohfune, K. Sugita, H. Shirahama, and T. Matsumoto, ibid., 1979, 31.
- 9) K. Sakai, T. Ohtsuka, S. Misumi, H. Shirahama, and T. Matsumoto, Chem. Lett., 1981, 355.
- 10) T. Ohtsuka, H. Shirahama, and T. Matsumoto, Tetrahedron Lett., $\underline{24}$, 3851 (1983).
- 11) Satisfactory spectral data were obtained for all new compounds. Mp's were given for crystalline compounds and ¹H NMR data for important compounds are recorded below. The data were obtained by 100 MHz (a) and 60 MHz (b) instruments in CDCl₃ soln unless otherwise stated.
- 13: δ (b, CCl₄) 1.03 (3H, d, J=7), 1.07 (6H, s), 1.19, 3.13 (each 3H, s), 5.05 (1H, d, J=9).
- 14: δ (b) 1.03 (3H, d, J=7), 1.10, 1.18 (each 3H, s), 1.78 (3H, bs), 5.11 (1H, d, J=10), 5.27 (1H, m).
- 27: δ (b) 0.20 (9H, s), 1.12, 1.15 (each 3H, s), 4.90 (1H, m), 4.98 (1H, m), 5.03 (1H, bs), 5.40 (1H, m), 6.75 (1H, m).
- 30: \(\(\) (a) 1.13, 1.15 (each 3H, s), 1.91, 2.41 (each 1H, d, J=14), 3.77 (3H, s), 4.24 (1H, dd, J=5, 11.5), 4.40 (1H, dd, J=4, 11.5), 4.93 (1H, d, J=4), 5.66, 5.95 (each 1H, s), 7.08 (1H, bs).
- 33: 8 (a) 0.97, 1.04 (each 3H, s), 1.51, 1.74 (each 1H, d, J=13.5), 3.13, 3.22 (each 1H, d, J=5). 3.30 (1H, m), 3.44 (1H, m), 3.60 (1H, bs), 3.78 (3H, s), 4.50 (1H, dd, J=3.5, 12), 4.72 (1H, dd, J=3.5, 12), 6.95 (1H, t, J=2.5).
- 36: S (a) 1.08, 1.11 (each 3H, s), 2.08 (2H, s), 3.78 (3H, s), 4.07 (1H, d, J=8.5), 4.25 (1H, dd, J=6, 12), 4.40 (1H, dd, J=4.5, 12), 5.57, 6.01 (each 1H, s), 7.02 (1H, t, H=2.5).
- 12) A quite similar endo-lactone conformation has been found for a PL derivative by X-ray analysis (Ref. 1a).

(Received August 23, 1984)