REGIO- AND STEREOSPECIFIC SYNTHESIS OF ALLYLIC TERTIARY AMINES

David Cavalla and Stuart Warren* University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW.

E and Z allylic amines have been synthesised by stereospecific elimination of $Ph_2PO_2^-$ from pure diastereoisomers (3) and (4).

A good synthesis of allyl amines should control both the position and the geometry of the double bond. In the displacement of allylic halides by amines,¹ the position of the double bond may change by allylic rearrangement² before,³ during,⁴ or even in some cases after⁵ the reaction. Regiochemical control has been effected in a number of ways, e.g. by [3,3] sigmatropic rearrangements of thiocyanates⁶ or trichloroimidates,⁷ by vinyl cuprate addition to Mannich equivalents,⁸ or by Wittig reactions.⁹ Stereochemical control is more difficult. Both the cuprate⁸ and Wittig⁹ routes give *cis* double bonds and both have been modified (by the use of vinyl alanates⁸ or by varying the conditions of the Wittig reaction¹⁰) to favour the *trans* isomer. The Wittig route always gives some of the unwanted isomer and separation is often difficult.

We have used the Horner modification of the Wittig reaction to synthesise single isomers of alkenes,¹¹ dienes,¹² and vinyl ethers¹³ without separation from the other geometrical isomer. Using diphenylphosphinoyl (Ph_2PO) as the anion-stabilising group and lithium as the counter-ion allows the isolation of alcohols (1). Separation of the diastereoisomers followed by stereospecific

4505

syn elimination of $Ph_2PO_2^-$ gives, separately, both the <u>Z</u> and the <u>E</u> alkene.

The successful application of this method to the synthesis of alkyl amines demanded that the anion from (2) did not eliminate amide ion. In fact the starting materials (2) can be made by the formal reverse of this reaction - the Michael addition¹⁴ of a secondary amine to vinyldiphenylphosphine oxide.¹⁵ The anion of (2) could be made at 0° C with BuLi in THF without loss of amine (even weakly basic morpholine) and added cleanly to aldehydes and ketones. The adducts (3) and (4) were separated from starting materials by flash¹⁶ or column chromatography and the combined yields were good even with enolisable ketones (entries 1, 6, 7 and 9, table).

In the cases where $R^1 \neq R^2$, the diastereoisomers (3) and (4) were separated by chromatography or fractional crystallisation, or in one case by t-butyldimethylsilyl ether¹⁷ formation, chromatography, and desilylation. Recrystallisation gave pure¹⁸ (3) or (4) with no detectable trace of the other isomer. Completion of the Horner-Wittig reaction (NaH, DMF, 30°C) gave allyl amines (5) and (6) in high yield. These were isolated as their crystalline HCl salts and shown to be single geometrical isomers by IR and NMR.

Table

Entry	R_2	R^1	R^2	Yield	Ratio (3) · (4)	Separation Method*	Yield (5) (6)	
							(-)	(-)
1	(CH ₂) ₅	CH ₃	CH3	75	-	-	72	
2	20	CH3	н	69	51 : 49	А	74	81
3		Ph	н	80^{a}	52 : 48	В	72	86
4		i-Pr	CH3	36 ^{a,b}	20 : 80	С	86	91
5	$-(CH_2)_5^2$			77	-	-	71	
6	(CH ₂) ₄	CH3	CH3	70	-	-	76	
7	23 -1	n-Pr	CH3	63 ^a	28 : 72	С	88	87
8	-(CH ₂) ₅ -			70	-	-	80, ^C 85	
9	(CH ₂) ₂ 0	CH3	CH3	65	-	-	9	0
10	4 4	CH3	н	75^{a}	50 : 50	В	71	78
11		Ph	Н	77^{a}	66 : 34	D	68	71
12	-(^{CH} 2) ₅ -			68			81	

a. Reaction in THF with LiBr; rest in Et_2O with LiBr.

- b. When the reaction was performed at -30° C in THF, a yield of 46% and a 25:75 ratio of (3) : (4) was observed.
- c. Elimination with DBN (CH_2Cl_2 under reflux)
- <u>Separation Methods</u>: A, HPLC (EtOAc, 85%; Et₃N, 3%; light petroleum, b.p.
 60 80^oC, 12%), B, Fractional Crystallisation (EtOAc), C, Column
 Chromatography (SiO₂, EtOAc, 85%; Et₃N, 3%; light petroleum, b.p. 60 80^oC, 12%), D, 1. t-BuMe₂SiCl, 2. preparative TLC, 3. n-Bu₄NF, THF; see ref. 17.

The aldehyde adducts (3) and (4) are formed in rougly equal amounts (entries 2, 3, 10 and 11, table) in contrast to the alkene synthesis¹¹ where erythro selectivity is usually high. Stereoselectivity is higher for the ketone adducts (entries 4 and 7) and favours the threo isomer. The reaction is always regio-specific even when the double bond is exocyclic to a six-membered ring (entries 5, 7, and 11).

The table gives a range¹⁸ of amines all containing piperidine, pyrrolidine, or morpholine. Electrophiles include aliphatic and aromatic aldehydes, cyclic and acyclic ketones. Yields of products from symmetrical ketones are high (entries 1, 6, 9 and 5, 8, 12) and even with the separation needed in other cases, yields are nearly as high, normally allowing the conversion of (1) into 30 - 40% of both isolated amines. We are now extending the scope of this reaction to primary and secondary amines and to other substitution patterns.

We thank Pfizer Central Research and the S.E.R.C. for a C.A.S.E. award and Dr C. W. Greengrass for many helpful discussions.

References

- R. H. DeWolfe and W. G. Young, Chem. Rev., 1956, 56, 753; see pp 851 854. 1.
- R. H. DeWolfe and W. G. Young in 'The Chemistry of Alkenes', ed., S. Patai, 2. Interscience, London, 1964, pp 681 - 738. P. B. de la Mare in 'Molecular Rearrangements', ed. P. de Mayo, Interscience
- 3. New York, 1963, pp 27 - 110.
- W. G. Young, I. D. Webb and H. L. Goering, J. Amer. Chem. Soc., 1951, 73, 4. 1076.
- 5. R. L. Craig and J. S. Roberts, Chem. Commun., 1972, 1142; R. S. Atkinson and C. W. Rees, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 1967, 1232; A. Padwa and P. H. J. Carben, <u>J. Org. Chem.</u>, 1976, 41, 180.
- W. S. Emerson, G. F. Deebel and R. I. Longley, J. Org. Chem., 1949, 14, 696. L. E. Overman, Accounts Chem. Res., 1980, 13, 218. 6.
- 7.
- C. Germon, A. Alexakis and J. F. Normant, <u>Tetrahedron Lett.</u>, 1980, 21, 3763. E. E. Schweizer, L. D. <u>Smucker</u> and R. J. <u>Votral</u>, <u>J. Org. Chem</u>., 1966, 31, 8. 9. 467.
- 10. A. Marxer and T. Leutart, Helv. Chim. Acta., 1978, 61, 1708.
- 11.
- A. D. Buss and S. Warren, <u>J.C.S. Chem. Comm.</u>, 1981, 100.
 A. H. Davidson and S. Warren, <u>J.C.S. Perkin I</u>, 1976, 639; A. H. Davidson,
 I. Fleming, J. I. Grayson, A. Pearce, R. L. Snowden, and S. Warren, <u>Ibid.</u>, 12. 1977, 550.
- 13. C. Earnshaw, C.J. Wallis and S. Warren, J.C.S. Perkin I, 1979, 3099.
- D. J. Collins, S. A. Mollard, N. Rose and J. M. Swan, Austral. J. Chem., 14. 1974, 27, 2365.
- 15.
- F. J. Welch and H. J. Paxton, J. Polym. Sci. Part A, 1965, 3, 3427.
 W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 1978, 43, 2923.
 E. J. Corey and A. Venkateswarlu. J. Amer. Chem. Soc., 1972, 94, 6190. 16.
- 17. All new compounds gave satisfactory spectra and analytical data. Disubstituted <u>E</u> and <u>Z</u> isomers (5) and (6) were identified by I.R. and \overline{I}_{H} 18. NMR coupling constants. Trisubstituted isomers were identified by n.O.e in the ¹H NMR.

(Received in UK 9 August 1982)