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Abstract: Several acylations of pentitol derivatives mediated by Candida cylindracea have been 
shown to be enantio-, or diastereo-, group selective; a pattern emerges from the selectivities of 
these reactions which may have some predictive value. 

In studies directed towards syntheses of amino sugar derivatives, chirons derived from meso or 

otherwise symmetrical pentitols were required. This paper describes the methodology used to obtain these 

compounds: biocatalytic monoacylations of diols wherein the symmetry of the product is reduced with respect 

to the starting material. Some of these transformations are highly stereoselective, giving products of excellent 

stereoisomeric purity; a typical result is depicted below. 
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Diol 1 is conveniently prepared from adonitol via a three step sequence (tritylation, benzylation, detritylation). 

When 0.005 M hexane solutions of this material are treated with excess vinyl acetate in the presence of a crude 

preparation of the lipase Candida cylindracea gives monoacetate 2 and the corresponding diacetate. Kinetic 

amplification of enantiomeric excess ’ _ 4 is operative, ie the optical purity of alcohol 2 is enhanced via 

relatively rapid removal of the minor enantiomer in a second acylation step. Consequently, the enantiomeric 

purity of 2 increases as the reaction proceeds, at the expense of chemical yield. In practice, good optical and 

chemical yields are obtained if the reaction is stopped when diol 1 has disappeared (TLC). Diacetate formed 

in this transformation can be hydrolyzed and recy~led.~ Enantiogroup selective, enzyme-mediated reactions 

are common,6 but examples in which three synthetically useful asymmetric centers are generated are relatively 

rare. I 

Diastereogroup selective acylation of the D-arabinitol derivative 3 is also mediated by Candida 

cvfindracea. This reaction transforms the stereochemicallv silent C? carbon of the diol into a defined chiral 
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center. Presumably, kinetic amplijication of diastereomeric excess is operative in this reaction, as illustrated 

below. 
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Absolute configurations of the product alcohols 2 and 4 were established by converting them to the 

dithioacetals 5 and 6, respectively; the latter compounds (or their enantiomers) have been prepared in optically 

active form from pentoses.8 
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Group-selective acylations were also attempted using diols 7 and 8, derived from L-arabitol and xylitol, 

respectively. However, acyl transfers to these substrates mediated by Candida cylindracea occurred in a 

stereorandom fashion. 

:Bn OBn 

HO+ 

OBn 

7 low selectivity 

OBn OBn 

HO+H 

OBn 

8 no selectivity 



5703 

It appears from these results that the stereochemical arrangement I is processed slowly by Candidu 

cylindruceu, whereas hydroxyl groups of entities II - IV am acylated relatively quickly. This accounts for the 

observed stereoselectivities for acylations of diols 1 and 3, aud the lack of selectivities for substrates 7 and 8 

(neither of which contain fragment I). 
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In related work the meso diol9, an erythritol derivative, was acylated with appreciable enantiogroup 

selectivity. The absolute configuration of the predominant enantiomer of 10 was not established because the 

selectivity is not sufficient for practical appliactions; however, on the basis of the preceding discussion it 

seems likely to be that indicated below.9 
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Chemical and optical yield information for all the acylations presented in this paper are 

summaraized in the following Table. 
Table. Optical and chemical yield information 

compound mass equivalents of time 

Candida cylindracea W 

monoacetate 

opt. purity (%) yield (%)d 

diacetate 

yield (%)d 

1 4.0 48.5 >95C (d.e.) 58 42 

3 4.0 30.0 >95b 70 28 

7 4.0 24.5 12c 59 22 

8 3.0 54.0 -0b 84 6 

9 0.3 24.0 67h 70 17 

a See the text for a representative experimental. h The enantiomeric excess was determined by 1H NMR using 
(+)-Euf,hfc)g. c The diastereomeric excess was determined by HPLC. d Isolated yields after flash 
chromatography. 
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Crude samples of Candida cylindruceu are available for under $1 per gram (Sigma). Stercoselective 

acylations mediated by this enzyme proceed at a convenient rate when comparable masses of substrate and 

enzyme preparation arc used, consequently, the experiments outlined in this paper are cheap and 

experimentally simple.5 Moreover, some of these reactions have been performed using over 10 g of substrate, 

and significant scale-up should be possible. Such facile preparations of &irons are of obvious importance for 

contemporary asymmetric syntheses. Experiments are in progress to investigate biocatalytic 

desymmetrizations of other substrates; it will be interesting to determine whether or not the stereochemical 

bias observed for these acylations is exhibited in similar transformations mediated by Candida cylindracea. 
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