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Summary:  The 12C/13C kinetic isotope effects for  the bis-cinchona-Os04 catalyzed 
dihydroxylation of  4-nitrostyrene, 4-methoxystyrene and allyl 4-methoxybenzoate have been 
measured at the olefinic carbons by the method of  Singleton. For each olefin, the 12C/13C kinetic 
isotope values are substantial and similar at the two olefinic carbons. These results accord well 
with prediction based on a [3+2] cycloaddition pathway but not with expectations for a [2+2] 
cycloaddition process. Copyright © 1996 Elsevier Science Ltd 

The detailed mechanism of the OsO4-bis-cinchona alkaloid catalyzed enantioselective dihydroxylation of 

olefins has been the subject of intensive study, especially with regard to the origin of enantioselectivity.l,2 Most 

recently, a detailed analysis has been presented of possible transition states for this process in terms of [3+2] 

(Criegee) and [2+2] (Sharpless osmaoxetane) cycloaddition paths. 3 It was concluded that one particular [3+2] 

transition state is consistent with all the available experimental data. In contrast, it was not possible to reconcile 

much of the experimental evidence with a metallaoxetane-like transition state. The preferred [3+2] transition state 

(Criegee-Corey-Noe (CCN) model 3) is shown in Scheme 1 for the substrate styrene and the catalytic ligand 1, 

[(DHQD)2PYDZ]. The essential structural elements of the [3+2] transition state which is presented in Scheme 1 

have been described in detail elsewhere. 2 One prediction which can be made on the basis of this transition state is 

that the 12C/13 C kinetic isotope effect for the dihydroxylation of olefins should be significant and approximately 

the same at each of the carbon atoms of the olefinic linkage. This communication presents the results of a test of 

this prediction which utilized I3C NMR measurements by the method of Singleton for the accurate determination 

of 12C/I 3 C kinetic isotope effects. 4 

The kinetic isotope effects for the catalytic dihydroxylation with ligand 1 were measured for three 

substrates which produce 1,2-diols with high enantioselectivity: 4-nitrostyrene, 2c 4-methoxystyrene 2c and allyl 4- 

methoxybenzoate. 2f The asymmetric dihydroxylation was carried out with approximately 5.0 g of substrate to 97- 

99% conversion (determined accurately 4 by HPLC or GC analysis of the reaction mixture using naphthalene or O~- 
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Scheme 1. CCN [3+2] cycloaddition pathway for the 
asymmetric dihydroxylation of styrene catalyzed by 
l * O s O 4  . 
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Figure  1. Measured 12C/13C kinetic isotope 
effects for the asymmetric dihydroxylation of 
monosubstituted olefins. 

tetralone as internal standards). 5 In the case of the substituted styrenes, the unreacted olefin was isolated, purified 

and subjected directly to NMR analysis. 6 In the case of allyl 4-methoxybenzoate, the recovered olefin was 

epoxidized, and then the rigorously purified epoxide was submitted to NMR analysis. 7 The peak areas from 

averaged 13C NMR spectra were scaled to an internal reference carbon atom and were compared to averaged 

control spectra to obtain the area ratios, R/R0. For each substrate, three individual asymmetric dihydroxylations 

were performed, and two spectra were taken of each sample, including the control, producing a total of eight 

spectra. The individual 12C]13C kinetic isotope effects and their standard deviations were calculated from the 

measured values of R/R0 and the fractional conversion, F, using the equations of Singleton. 4b 

The 12C/13C kinetic isotope effects for the catalytic asymmetric dihydroxylation of each substrate are 

shown in Figure 1. For each substrate, significant and similar primary 12C/13C kinetic isotope effects were 

observed at each of the olefinic carbon atoms. No other significant 12C]13C kinetic isotope effects were found. 

These results are fully consistent with the CCN [3+2] cycloaddition model for the his-cinchona alkaloid catalyzed 

enantioselective dihydroxylation. In the transition state arrangement for this process, depicted in Scheme 1, the 
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Scheme 2. The [2+2] cycloaddition pathway for the asymmetric 
dihydroxylation of styrene. 

two carbon atoms of the olefinic linkage are involved in simultaneous formation of carbon-oxygen bonds. A 

significant and similar 12C/13C primary kinetic isotope effect on this process is expected for each of these carbon 

atoms. The observed difference in the magnitude of the isotope effect for 4-methoxystyrene at the benzylic 

methine and terminal methylene carbons of the double bond is consistent with the anticipated greater degree of 

bonding to the electron rich terminal methylene in the transition state. 

It is more difficult to estimate the 12C/13C kinetic isotope effect for a [2+2] pathway, especially because 

there has been no clear proposal for the transition state structure.le,8 Assuming that the transition state resembles 

the metallaoxetane structure (4, Scheme 2) (occurring either just before or just after the metallaoxetane 

intermediate), significantly different 12C/13C isotope effects are expected at each olefinic carbon atom because of 

the large difference in C-O and C-Os stretching frequencies. For example, the following analysis can be made for 

the dihydroxylation of 4-methoxystyrene. The most reasonable [2+2] pathway is that which attaches the 

electrophilic Os to the terminal methylene and the O to the henzylic methine of the substrate, as shown in Scheme 

2. The stretching frequencies for the C-Os and C-O bonds can be estimated as approximately 500-600 cm -1 9and 

1000 cm -1, respectively. The 12C/13C kinetic isotope effect for the methylene position is therefore expected to be 

lower than that at the methine position by a significant amount rather than larger, as is observed.10 

In the event that metallaoxetane formation is rapid and reversible with subsequent slow rearrangement to 

the [3+2] adduct, it seems likely that a relatively small, perhaps insignificant, 12C/13C kinetic isotope effect would 

be expected at the carbon atom which is bound to oxygen in the metallaoxetane, contrary to the above summarized 

data. Thus, this possibility is also difficult to reconcile with our experimental results. 

The experimental results currently available, including the kinetic isotope effect data summarized above, 

favor the r~-complex/[3+2] mechanism for the bis-cinchona alkaloid catalyzed dihydroxylation of olefins. As 

discussed in detail in a recent paper, the experimental evidence which is inconsistent with a [2+2] transition state 

model includes: (1) enantioselectivity as a function of olefin structure for a wide range of olefinic substrates, 

(2) enantioselectivity as a function of catalyst structure for a variety of catalysts in the cinchona series, and 

(3) observed Michaelis-Menten kinetics which demonstrate rapid reversible formation of an intermediate prior to 

the rate limiting step. 3 The [3+2] CCN model not only accords well with the experimental facts, but also leads to 

uselhl predictions which have been confirmed in practice.ll 
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