Convenient Procedures for the Asymmetric Reduction of 1,4-Diphenylbutane-1,4-dione and Synthesis of 2,5-Diphenylpyrrolidine Derivatives

Mariappan Periasamy,* Muthu Seenivasaperumal, Vutukuri Dharma Rao

School of chemistry, University of Hyderabad, Hyderabad 500 046, India Fax +91(40)23012460; E-mail: mpsc@uohyd.ernet.in *Received 21 July 2003; revised 18 August 2003*

Abstract: Asymmetric reduction of 1,4-diphenylbutane-1,4-dione (1) was carried out using the reducing agents NaBH₄, BH₃:THF, and PhNEt₂·BH₃ in combination with the chiral reagents (*S*)-(-)- α , α -diphenyl-2-pyrrolidinemethanol (4) or (*S*)-proline (5), in the presence of TMSCl or B(OMe)₃ under various conditions to obtain the corresponding 1,4-diol **2** in 52% to 97% ee. The chiral 1,4-diol **2** was converted to various C₂-symmetric (2*S*,5*S*)-2,5-diphenyl-pyrrolidine derivatives **3a–e** (45 to 75% yield) via the corresponding dimesylate prepared using MsCl and Et₃N.

Key words: asymmetric reduction, chiral 1,4-diols, chiral pyrrolidine derivatives, 1,4-dione

Asymmetric synthesis is one of the major expanding areas of research in organic chemistry. The use of C_2 -symmetric chiral auxiliaries has gained considerable importance in current asymmetric syntheses.¹ Among the various chiral auxiliaries, the 2,5-disubstituted pyrrolidine system is an important class of reagents. The *trans*-2,5-dimethyl-pyrrolidine was first developed as a useful chiral auxiliary for enantioselective alkylation of enamines derived from it.²⁻⁴ In this case, the recovery and recycling of chiral auxiliary are somewhat difficult. Therefore, several groups pursued the synthesis of the corresponding diphenyl anologue, a nonvolatile, stable, crystalline compound. The preparation of this system involves the enantioselective reduction of 1,4-diphenylbutane-1,4-dione (1) and cyclisation of the resultant diol derivative 2 (Scheme 1).

Scheme 1 Synthesis of 2,5-Diphenyl pyrrolidine derivatives

The asymmetric reduction of the diferrocenyl-1,4-diketone to obtain the corresponding diol samples of >98% ee has been reported⁵ using the CBS oxazaborolidine catalyst, which requires considerable care for preparation to achieve good selectivities.⁶ In these reductions, the borane reagents such as BH₃·THF, and BH₃·SMe₂, have been used. In recent years, several simplified procedures have appeared^{7,8} for the oxazaborolidine catalysed asymmetric

SYNTHESIS 2003, No. 16, pp 2507–2510 Advanced online publication: 21.10.2003 DOI: 10.1055/s-2003-42447; Art ID: Z10103SS © Georg Thieme Verlag Stuttgart · New York reduction. For example, an extremely effective oxazaborolidine catalyst can be easily and rapidly prepared in situ from the amino alcohol **4** and trimethyl borate (1 h at r.t.).⁹ Also, it has been reported¹⁰ that (*S*)-proline (**5**) (Figure 1) and BH₃·THF reagent combination was effective in enantioselective reduction of acetophenone at 110 °C in 10 minutes. Accordingly, it is desirable to develop simplified, convenient procedures for the asymmetric reduction of the 1,4-diphenylbutane-1,4-dione (**1**). We wish to report here the results of detailed studies on the preparation and use of the chiral 1,4-diol **2** for the synthesis of several chiral 2,5-diphenylpyrrolidine derivatives.

Figure 1 Structures of chiral alcohols 4 and 5

The required diphenylbutane-1,4-dione (1) is easily prepared by following an established protocol via the Friedel–Craft acylation of benzene with fumaryl chloride and subsequent reduction with SnCl₂/HCl.^{11,12}

The borane reagents like BH₃·SMe₂, BH₃·THF, diborane, and catecholborane suffer from drawbacks such as thermal decomposition, low concentration, noxious odor or expense. Accordingly, we have examined the asymmetric reduction of 1,4-dione 1 using borane reagents generated in situ using NaBH₄ and amine-boranes in combination with (S)-(-)- α , α -diphenyl-2-pyrrolidinemethanol (4) and (S)-proline (5). The results are summarised in Tables 1 and 2. When (S)-(-)- α , α -diphenyl-2-pyrrolidinemethanol (4) (10 mol%) was used in combination with NaBH₄/ Me₃SiCl reagent, the 1,4-diol 2 was obtained in 70% yield, with *dl/meso* ratio 75:25 and in 52% ee (Table 1, entry 1). The results were better when B(OMe)₃ was used in combination with NaBH4/Me3SiCl, BH3·THF and PhNEt₂·BH₃ as hydride sources, (Table 1, entries 2, 3 and 4) (Scheme 2).

The chiral (*S*)-(–)- α , α -diphenyl-2-pyrrolidinemethanol (**4**) was prepared from (*S*)-proline (**5**) in several steps.¹⁴ Although good enantioselectivities (Table 1) were achieved using this reagent, we have examined the development of a practical method for the reduction using (*S*)proline (**5**) itself. Buono et al.¹⁰ have reported that (*S*)-proline (**5**) gives good results in the asymmetric reduction of

Scheme 2 Asymmetric reduction using (*S*)-(–)-α,α-diphenyl-2-pyrrolidinemethanol (4) in combination with borane reagent and B(OMe)₃ (*dl/meso* = 75:25 to 93:7; 52–97% ee, 70–85% yield)

Table 1Asymmetric Reduction of 1,4-Dione 1 to 1,4-Diol 2 Using
(S)-(-)- α, α -Diphenyl-2-pyrrolidinemethanol (4)

Entry ^a	Borane Reagent	Yield (%) ^b	<i>dl/meso</i> ratio ^c	ee (%) ^d
1 ^e	NaBH ₄ /TMSCl	70	75:25	52 (1 <i>R</i> ,4 <i>R</i>)
2	NaBH ₄ /TMSCl	70	93:7	93 (1 <i>R</i> ,4 <i>R</i>)
3	BH ₃ ·THF	85	88:12	97 (1 <i>R</i> ,4 <i>R</i>)
4	$PhNEt_2 \cdot BH_3$	70	90:10	97 (1 <i>R</i> ,4 <i>R</i>)

^a All the reactions were carried out using 10 mol% of catalyst **4** and 5 mmol of 1,4-dione **1**.

^b Yields are of 1,4-diol **2** isolated by column chromatography on silica gel using hexane–EtOAc as eluent.

^c The *dl/meso* ratios were calculated from 13 C NMR data.

^dAll ee values reported here are based on maximum $[a]_D^{21}$ –58.5 (c = 1.01, CHCl₃, >98% ee) for (1*S*,4*S*)-(-)-**2**¹³ and the % of ee was calculated based on amount of *dl* (i.e. *R*,*R*- and *S*,*S*-isomers) present in the mixture.

e Reaction was performed without using B(OMe)3.

acetophenone at refluxing conditions. Accordingly, we have examined the asymmetric reduction of the 1,4-dione 1 using (S)-proline 5 along with various hydride sources. The results are summarised in Table 2.

Unfortunately, the 1,4-diol **2** was obtained only with lower selectivities using (*S*)-proline (**5**). However, the mixture of nonracemic and *meso* diastereomers of **2** has been readily purified to obtain the samples of >95 ee using (*S*)-proline (**5**) and B(OH)₃.¹⁵ The resultant 1,4-diol **2** (>95% ee) was readily cyclised using primary amines to obtain the corresponding 2,5-diphenylpyrrolidine derivatives **3a–e** via the dimesylate **6** (Scheme 3).

Scheme 3 Synthesis of (2*S*,5*S*)-*N*-alkyl and *N*-aryldiphenylpyrrolidine derivatives

Synthesis 2003, No. 16, 2507-2510 © Thieme Stuttgart · New York

Table 2Asymmetric Reduction of 1,4-Dione 1 to 1,4-Diol 2 Using(S)-Proline (5)

Entry	Borane Reagent	Yield (%) ^a	<i>dl/meso</i> Ratio ^b	ee (%) ^c
1 ^{d,e}	NaBH ₄	60	22:78	64 (1 <i>S</i> ,4 <i>S</i>)
$2^{d,f}$	$BH_3{\cdot}THF^g$	60	62:38	81 (1 <i>R</i> ,4 <i>R</i>)
3 ^{f,h}	$BH_3{\cdot}THF^i$	60	76:24	53 (1 <i>R</i> ,4 <i>R</i>)
4 ^{f,h}	$PhNEt_2 \cdot BH_3$	75	73:27	85 (1 <i>R</i> ,4 <i>R</i>)

^a Yields are of 1,4-diol **2** isolated by column chromatography on silica gel using hexane–EtOAc as eluent.

^b The *dl/meso* ratios were calculated from ¹³C NMR data.

^cAll ee values reported here are based on maximum $[a]_D^{21}$ –58.5 (c = 1.01, CHCl₃, >98% ee) for (1*S*,4*S*)-(-)-2¹³ and the % of ee was calculated based on amount of *dl* (i.e. *R*,*R*- and *S*,*S*-isomers) present in the mixture.

^d 100 mol% of **5** was used.

^e 2.5 mmol of the 1,4-dione **1** was used.

^f 2 mmol of the 1,4-dione **1** was used.

 $^{\rm g}$ (S)-Proline (5) was added to BH₃·THF prepared in situ using NaBH₄/ $\rm I_{2}.$

^h 20 mol% of **5** was used.

ⁱ BH₃·THF prepared in situ using NaBH₄/I₂ was added to (S)-proline (5).

In conclusion, the enantioselective reduction of 1,4diphenylbutane-1,4-dione (1) to the corresponding 1,4diol **2** is conveniently carried out using (*S*)-(–)- α , α -diphenyl-2-pyrrolidinemethanol (**4**) and (*S*)-proline (**5**) and easy to handle borane reagents. The convenient synthetic procedures described here for the preparation of the chiral 2,5-diphenylpyrrolidine system **3** should facilitate the syntheses and application of these derivatives.

Reduction of 1,4-Diphenylbutane-1,4-dione (1) Using BH₃·THF Complex/(S)-(-)-α,α-Diphenyl-2-pyrrolidinemethanol (4)/ B(OMe)₃ (10 mol%) Reagent Combination (Entry 3, Table 1)

NaBH₄ (0.76 g, 20 mmol) was suspended in anhyd THF (40 mL) under N₂. The reaction mixture was cooled to 0 °C and a solution of I₂ (2.1 g, 8.3 mmol) in THF (25 mL) was added dropwise during 2.5 h at 0 °C using a pressure equalizing dropping funnel. A solution of 4 (0.8 mmol) and B(OMe)₃ (1 mmol) in THF (10 ml) was added and the mixture was stirred for 10 min. To this mixture, was added slowly 1,2-dibenzoylethane (1 g, 4.6 mmol) dissolved in THF (15 mL) with a pressure equalizing dropping funnel during 1 h at 10 °C and the mixture was further stirred at 25 °C for 1 h. The mixture was hydrolysed using 2 N HCl (15 mL) and the organic layer was separated. The aquous layer was extracted with Et₂O. The combined organic extracts were washed with brine (10 mL) and dried (MgSO₄). After evaporation, the crude product was purified on a silica gel column using hexane-EtOAc (80:20) as eluent to obtain the (+)-1,4-diol **2** in 97% ee; yield: 1.02 g (85%); mp 63–65 °C; *dl/ meso* ratio = 88:12; $[\alpha]_D^{21}$ +49.8 (*c* = 0.542, CHCl₃) {Lit.¹³ $[\alpha]_D^{21}$ – 58.5 (c = 1.01, CHCl₃ >98% ee) for (1*S*,2*S*)-(-)-2}.

¹H NMR (200 MHz, CDCl₃): δ = 1.2–1.9 (m, 4 H), 2.8 (s, 2 H), 4.6–4.7 (m, 2 H), 7.2–7.4 (m, 10 H).

¹³C NMR (50 MHz, CDCl₃): δ = 35.1 (*meso*), 36.0 (*dl*), 73.9 (*meso*), 74.4 (*dl*), 126.0, 127.4, 128.4, 144.8.

Reduction of 1,4-Diphenylbutane-1,4-dione (1) with NaBH₄/(S)-Proline (5) Complex (Entry 1, Table 2)

NaBH₄ (0.19 g, 5 mmol) and (*S*)-proline (**5**; 0.58 g, 5 mmol) were taken in THF (10 mL) and stirred for 2 h at r.t. 1,2-Dibenzoylethane (0.59 g, 2.5 mmol) in THF (10 mL) was added to this suspension of sodium L-prolinate borane complex and the mixture was stirred at 40 °C for 4 d. The excess reagent was decomposed with H₂O and the mixture was concentrated under reduced pressure and extracted with Et₂O. The organic extracts were washed with 10% HCl (10 mL), aq sat. NaHCO₃ solution (10 mL), brine (10 mL), and dried (MgSO₄). The solvent was evaporated and the crude product was purified on a silica gel column using hexane–EtOAc (80:20) as eluent to obtain the (–)-1,4-diol (–)-**2** in 64% ee, yield: 0.36 g (60%); *dl/meso* ratio = 22:78; $[\alpha]_D^{21}$ –8.0 (*c* = 0.25, CHCl₃) {Lit.¹³ $[\alpha]_D^{21}$ –58.5 (*c* = 1.01, CHCl₃), >98% ee for (1*S*,4*S*)-(–)-**2**}.

 ^1H NMR (200 MHz, CDCl_3): δ = 1.7–2.0 (m, 4 H), 2.4 (s, 2 H), 4.6–4.8 (m, 2 H), 7.2–7.4 (m, 10 H).

¹³C NMR (50 MHz, CDCl₃): δ = 35.0 (*meso*), 36.0 (*dl*), 74.1 (*meso*), 74.5 (*dl*), 125.9, 127.4, 128.4, 144.6.

Reduction of 1,4-Diphenylbutane-1,4-dione (1) using (*S*)-Proline (5) (20 mol%) and *N*,*N*-Diethylaniline-BH₃ Complex (Entry 4, Table 2)

To a stirred suspension of (*S*)-proline (**5**; 0.095 g, 0.83 mmol) in toluene (7 mL) was added a 1 M toluene solution of *N*,*N*-diethylaniline-BH₃ (0.83 mL, 0.83 mmol) at 25 °C. After stirring for a further 10 min, the reaction mixture was heated to reflux (110 °C). 1,2-Dibenzoylethane (0.476 g, 2 mmol) in THF (10 mL) was added, followed by dropwise addition of a 1 M toluene solution of *N*,*N*-diethylaniline-BH₃ (4 mL, 4 mmol) over 15 min. The mixture was further stirred for 0.5 h. After cooling to 25 °C, Et₂O (20 mL) was added. After work-up and purification, the (+)-1,4-diol (+)-**2** was obtained in 85% ee; yield: 0.36 g (75%); *dl/meso* ratio = 73:27, $[\alpha]_D^{21}$ +36.2 (*c* = 0.276, CHCl₃) {Lit.¹³ $[\alpha]_D^{21}$ -58.5 (*c* = 1.01, CHCl₃), >98% ee for (1*S*,2*S*)-(-)-**2**}.

¹H NMR (200 MHz, $CDCl_3$): $\delta = 1.3-1.9$ (m, 4 H), 2.6 (s, 2 H), 4.6-4.8 (m, 2 H), 7.2-7.4 (m, 10 H).

¹³C NMR (50 MHz, CDCl₃): δ = 35.0 (*meso*), 35.9 (*dl*), 74.0 (*meso*), 74.4 (*dl*), 126.0, 127.4, 128.4, 144.7.

(1*R*,4*R*)-1,4-Bis(methanesulfonyloxy)-1,4-diphenylbutane (6)¹³ To methanesulfonyl chloride (0.4 mL, 5.3 mmol) in CH₂Cl₂ (20 mL) at -20 °C was added a solution of (1*R*,4*R*)-1,4-diphenylbutane-1,4-diol (2; 0.5 g, 2.06 mmol, 96% ee) and Et₃N (0.87 mL, 6.2 mmol) in CH₂Cl₂ (20 mL). The reaction mixture was stirred for 1.45 h at -20 °C and then quenched with aq sat. NH₄Cl (2 mL). It was brought to 25 °C and concentrated to approximately 17 mL. The solution was then diluted with EtOAc (80 mL) and washed successively with a mixture of H₂O-brine–aq sat. Na₂CO₃ (1:2:1, 2 × 20 mL), and aq sat. NaHCO₃ (2 × 20 mL). The organic layer was dried (MgSO₄), filtered through Celite and concentrated to approximately 8 mL. The solution was then cooled to 0 °C. The crude dimesylate was precipitated out by dropwise addition of hexane (80 mL). The resulting solid was filtered, dried and immediately used for the next reaction without further purification.

N-Substituted 2,5-Diphenylpyrrolidines; (2*S*,5*S*)-*N*-Benzyl-2,5diphenylpyrrolidine (3a);Typical Procedure

Benzylamine (21 mL, 196 mmol) was added at 0 °C to (1*R*, 4*R*)-1,4bis(methanesulfonyloxy)-1,4-diphenylbutane (**6**; 0.32 g, 1 mmol) and the mixture was stirred at 0 °C for 14 h. After warming to 25 °C, the excess benzylamine was evaporated and the residue was dissolved in Et₂O (25 mL). The contents were successively washed with aq sat. NaHCO₃ (10 mL), brine (10 mL), dried (MgSO₄), and concentrated to afford the crude product as a gum. The crude product was purified on a silica gel column using hexane as eluent; yield: 0.234 g (75%); $[\alpha]_D^{21}$ –126 (c = 0.435, CHCl₃).

IR (neat): 3061, 1602 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 1.98–2.2 (m, 2 H), 2.4–2.8 (m, 2 H), 3.15 (d, J = 14 Hz, 1 H), 3.65 (d, J = 14 Hz, 1 H), 4.28 (m, 2 H), 7.1–7.3 (m, 15 H).

 ^{13}C NMR (50 MHz, CDCl₃): δ = 33.4, 51.1, 65.5, 126.4, 127.0, 128.0, 128.2, 128.3, 128.4, 140.2, 144.1.

Anal. Calcd for $C_{23}H_{23}N$: C, 88.25; H, 7.40; N, 4.47. Found: C, 88.50; H, 7.65; N, 4.65.

(2S,5S)-N-Phenyl-2,5-diphenylpyrrolidine (3b)

Yield: 0.134 g (45%); mp 190–1 94 °C; $[\alpha]_D^{21}$ –31 (c = 0.236, CHCl₃).

IR (KBr): 3020, 2935, 1597, 1502, 1359, 748, 698 cm⁻¹.

 1H NMR (200 MHz, CDCl_3): δ = 1.7–1.9 (m, 2 H), 2.5–2.7 (m, 2 H), 5.2–5.4 (m, 2 H), 6.4–6.7 (m, 3 H) 7.0–7.6 (m, 12 H).

¹³C NMR (50 MHz, CDCl₃): δ = 32.5, 63.3, 114.0, 115.7, 126.2, 126.7, 128.6, 128.8, 144.0, 145.1.

MS (EI): m/z = 299 (M⁺).

(2*S*,5*S*)-*N*-(2-Methoxyphenyl)-2,5-diphenylpyrrolidine (3c) Yield: 0.148 (45%); $[\alpha]_D^{21}$ -15 (*c* = 0.100, CHCl₃).

IR (KBr): 3052, 2965, 1596, 740, 700 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 1.9–2.1 (m, 2 H), 2.3–2.5 (m, 2 H), 3.4 (s, 3 H), 4.8–4.9 (t, 2 H, *J* = ? Hz), 6.6–6.9 (m, 4 H), 7.2–7.6 (m,10 H).

¹³C NMR (50 MHz, CDCl₃): δ = 34.5, 55.2, 67.8, 112.6, 120.8, 121.8, 122.0, 126.1, 126.5, 128.0, 139.0, 146.2, 153.1.

MS (EI): m/z = 329 (M⁺).

(25,55)-*N*-(2-Hydroxyethyl)-2,5-diphenylpyrrolidine (3d) Yield: 0.186 g (70%); $[a]_{D}^{21}$ -123 (c = 0.155, CHCl₃).

IR (neat): 3375, 1602 cm⁻¹.

 1H NMR (200 MHz, CDCl_3): δ = 1.8–2.1 (m, 2 H), 2.3–2.8 (m, 5 H), 3.0–3.3 (m, 1 H), 3.35–3.6 (m, 1 H), 4.2–4.5 (m, 2 H), 7.1–7.6 (m, 10 H).

¹³C NMR (50 MHz, CDCl₃): δ = 33.5, 49.1, 59.4, 66.5, 127.2, 127.7, 128.6, 144.1.

Anal. Calcd for $C_{18}H_{21}NO$: C, 80.97; H, 7.92; N, 5.24. Found: C, 81.35; H, 7.98; N, 5.50.

(2S,5S)-N-Butyl-2,5-diphenylpyrrolidine (3e)

Yield: 0.153 g (55%); $[\alpha]_D^{21}$ –90 (c = 0.140, CHCl₃).

IR (neat): 3063, 2959, 1602 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): $\delta = 0.5-0.71$ (t, 3 H), 0.8–1.2 (m, 4 H), 1.7–2.0 (m, 2 H), 2.1–2.3 (m, 2 H), 2.4–2.6 (t, 2 H, J = ? Hz), 3.7–3.9 (t, 2 H, J = ? Hz), 7.2–7.6 (m, 10 H)

¹³C NMR (50 MHz, CDCl₃): δ = 13.7, 20.5, 29.3, 34.9, 53.0, 69.4, 126.6, 127.2, 128.2, 146.2

MS (EI): m/z = 279 (M⁺).

Acknowledgement

We are thankful to the CSIR and DST (New Delhi) for financial support. Support of the UGC (New Delhi) under 'University of Potential for Excellence' programme is gratefully acknowledged.

References

- (1) Whiteshell, J. K. Chem. Rev. 1989, 89, 1581.
- (2) Whiteshell, J. K. Acc. Chem. Res. 1985, 18, 280.
- (3) Whiteshell, J. K.; Felman, S. W. J. Org. Chem. 1977, 42, 1663.
- (4) Whiteshell, J. K.; Felman, S. W. J. Org. Chem. **1980**, 45, 755.
- (5) Schwink, L.; Knochel, P. Tetrahedron Lett. 1997, 38, 3711.
- (6) Mathre, D. J.; Thomson, A. S.; Douglas, A. W.; Hoogsteen,
 K.; Carroll, J. D.; Corley, E. G.; Grabowski, E. J. J. J. Org.
 Chem. 1993, 58, 2880.
- (7) Quallich, G. J.; Woodall, T. M. Synlett 1993, 929.

- (8) Aldous, D. J.; Dutton, W. M.; Steel, P. G. *Tetrahedron: Asymmetry* **2000**, *11*, 2455.
- (9) Masui, M.; Shioiri, T. Synlett 1997, 273.
- (10) Brunel, J. M.; Pardigon, D.; Fauri, D.; Buono, G. Tetrahedron: Asymmetry 1993, 4, 2255.
- (11) Conant, J. B.; Lutz, R. E. J. Am. Chem. Soc. 1923, 45, 1303.
- (12) Bailey, P. S.; Lutz, R. E. J. Am. Chem. Soc. **1948**, 70, 2412.
- (13) Chong, J. M.; Clarke, I. S.; Koch, I.; Olbach, P. C.; Taylor, N. J. *Tetrahedron: Asymmetry* **1995**, *6*, 409.
- (14) Kanth, J. V. B.; Periasamy, M. Tetrahedron 1993, 49, 5127.
- (15) Periasamy, M.; Rao, V. D.; Seenivasaperumal, M. *Tetrahedron: Asymmetry* **2001**, *12*, 1887.