194. D-Gluconhydroximo-1,5-lactam and Related N-Arylcarbamates

Theoretical Calculations, Structure, Synthesis, and Inhibitory Effect on $\boldsymbol{\beta}$-Glucosidases

by Roland Hoos ${ }^{1}$), Andrew B. Naughton ${ }^{2}$), Walter Thiel, Andrea Vasella $\left.{ }^{1}\right)^{*}$, and Wolfgang Weber Organisch-Chemisches Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich
and Karen Rupitz, and Stephen G. Withers
Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, B.C.,V6T 121 Canada

(17.VIII.1993)

The known D-gluconhydroximo-1,5-lactam ($=$ D-glucono-1,5-lactam oxime) 7a, its nitrogen isotopomers 7b and 7 c , and the N -arylcarbamates $\mathbf{2 6 - 2 9}$ were synthesized from 2,3,4,6-tetra- O-benzyl-d-glucono-1,5-lactam (11a) and its nitrogen isotopomer 11b to establish the controversial structure of 7 a and to study the inhibition of β-glucosidases by the N-arylcarbamates 26-29. Conversion of 11a with Lawesson's reagent yielded a mixture of the thionolactam 15a and its manno-configurated isomer 16a, which was transformed into a mixture of the benzylated hydroximo-lactam 13a and the manno-isomer 17a. Debenzylation ($\mathrm{Na} / \mathrm{NH}_{3}$) and acetylation of this mixture led to the gluco-configurated pentaacetate 14 a and the manno-isomer 18a. Treatment of 11a with $\mathrm{Et}_{3} \mathrm{O} \cdot \mathrm{BF}_{4}$ and then with $\mathrm{H}_{2} \mathrm{NOH}$ gave exclusively the benzylated D-gluconhydroximo-1,5-lactam (benzylated D-nojirilactam oxime) 13a, which was transformed into 14a. Deacetylation of 14a yielded the hydroximo-lactam 7a. The isotopomers 7b and 7c were obtained by analogous reaction sequences, using either ${ }^{15} \mathrm{NH}_{3}$ or ${ }^{15} \mathrm{NH}_{2} \mathrm{OH} \mathrm{HCl}$. To prepare the acetylated N-arylcarbamates $20-\mathbf{2 5}$, 13a was debenzylated and acetylated $(\rightarrow$ 14a), followed by selective deacetylation to the tetraacetate 19 a and treatment with the appropriate isocyanates. The structure of the 2-chlorophenyl carbamate 21 was established by X-ray analysis. Deacetylation of 20-23 led to the N-arylcarbamates 26-29.

The ${ }^{15} \mathrm{~N}$-NMR spectra of $\mathbf{7 b}, \mathbf{7 c}$, and of their precursors $\mathbf{1 3 b}, \mathbf{1 3 c}, \mathbf{1 4 b}$, and $\mathbf{1 4 c}$, show that the $\mathrm{C}=\mathrm{N}$ bond in all these lactam oximes is exocyclic as predicted from semiempirical and ab initio SCF-MO calculations on the structure of acetamide oxime and 5-pentanelactam oxime. According to these calculations, 5-pentanelactam oxime is a (Z)-configurated, flattened chair. X-ray analysis established the structure of D-glucono-1,5-lactam oxime (7a) in the solid state, where it adopts a conformation between ${ }^{4} \mathrm{C}_{1}$ and ${ }^{4} \mathrm{H}_{3}$. In $\mathrm{H}_{2} \mathrm{O}, 7 \mathrm{a}$ is a flattened ${ }^{4} \mathrm{C}_{1}$. The calculations also predict that protonation at the exocyclic N -atom strengthens the conjugation between the endocyclic N -atom and the hydroxyimino group, and leads to a half-chair conformation. This is evidenced by the chemical shift differences in the ${ }^{15} \mathrm{~N}$-NMR spectra observed upon protonation of $\mathbf{7 b}$ and 7 c . The hydroximolactam 7a and the N-arylcarbamates 26-29 are competitive inhibitors of the β-glucosidases from sweet almond (emulsin) and from Agrobacterium faecalis ($=A b g$), with K, values between 8 and $21 \cdot 10^{-6} \mathrm{~m}$ against emulsin (at pH 6.8) and between 0.15 and $1.2 \cdot 10^{6} \mathrm{~m}$ against Abg (at pH 7.0).

[^0]Introduction. - The hydroximo-lactones (= lactone oximes) 1 [1] and 2 [2], the corresponding N-phenylcarbamates 3 [1] and 4 [2], and the semicarbazones 5 and 6 [3] are strong (K_{I} between 10^{-5} and $10^{-8} \mathrm{~m}$), competitive, and neutral glycosidase inhibitors, suggesting that the related 5-amino-5-deoxy and 5-thio-5-deoxy analogues should also be prepared and evaluated as glycosidase inhibitors. Ganem and Papandreou [4] have, indeed, reported on the synthesis and enzymatic testing of the parent hydroxyamino lactam (= lactam oxime) 8, and the related amidine 9 and amidrazone 10 , which they classified as transition-state analogues, and as broad-spectrum inhibitors. The inhibitory properties were traced back primarily to the shape, rather than to the basic character of 810. Their shape, and particularly their conformation, were considered to be a consequence of the proposed constitution 8, i.e. of the endocyclic $\mathrm{C}=\mathrm{N}$ bond, and the hydroximolactam was claimed to be the first neutral inhibitor possessing a well-defined half-chair conformation. We have already [5] formulated doubts about the proposed constitution of the hydroximo-lactam, which should be 7 rather than 8 . This is suggested by X -ray data of related amide oximes as available from the Cambridge Data Files, and by NMR studies of amide oximes ${ }^{3}$) (see [6] and lit. cit. there).

$1 \mathrm{R}=\mathrm{OH}$
$2 \mathrm{R}=\mathrm{NHAC}$

$3 \mathrm{R}=\mathrm{OH}$
$4 \mathrm{R}=\mathrm{NHAC}$

$5 \mathrm{R}=\mathrm{OH}$
$6 R=N H A C$

$7 a$

7b

7c

8

9

10

$26 R^{1}=R^{2}=R^{3}=H$
$27 \mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
$28 R^{1}=R^{3}=H, \quad R^{2}=C l$,
$29 R^{1}=R^{2}=H, R^{3}=C l$

[^1]We now report the results of calculations of the relative stability of amide and lactam oximes and their (hydroxyamino)imine tautomers, the synthesis of D-gluconhydroximo-1,5-lactam ($=$ D-glucono-1,5-lactam oxime) $7 \mathbf{a}^{4}$) and its nitrogen isotopomers $\mathbf{7 b}$ and $7 c$, the proof of their constitution, the preparation of the N-arylcarbamates 26-29, and their properties as glucosidase inhibitors.

Results and Discussion. - 1. Quantum-Chemical Calculations. We carried out semiempirical and ab initio SCF-MO calculations on acetamide oxime, 5-pentanelactam oxime, and their tautomers. Molecular geometries were fully optimized without any symmetry constraints. The AM1 method [7] was used for systematic conformational searches. We found three minima (I-III) for acetamide oxime, four minima (IV-VII) for 2-(hydroxyamino)ethanimine, four chair (VIII-XI) and two twist (VIIIa, VIIIb) conformers for 5-pentanelactam oxime, and eight half-chair conformations (XII-XIX) for 2,3,4,5-tetrahydro-2-(hydroxyamino)pyridine. Fig. 1 depicts the most stable of these species (i.e. I, IV, VIII, and XII), and defines the relevant dihedral angles. The five tautomers (XX-XXIV) considered for the protonated cyclic compounds were derived from the most stable neutral conformers (i.e. from VIII and XII). Force constant analyses confirmed that each of the optimized AM1 structures (I-XXIV) is a minimum on the corresponding potential surface.

1

Iv

viil

XII

Fig. 1. Survey of Tautomers of Acetamide Oxime and 5-Pentanelactam Oxime. Only the most stable AM1 structure is indicated for conformers I-III, IV-VII, VIII-XI, and XII-XIX. The numbering in I, IV, XX-XXIV is analogous to that in VIII and XII. Dihedral angles: $\alpha=\mathrm{H}(1 b)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ in I-VII, $\alpha=\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)-$ $\mathrm{C}(3)$ otherwise; $\beta=\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(7)-\mathrm{O}(8) ; \gamma=\mathrm{C}(2)-\mathrm{N}(7)-\mathrm{O}(8)-\mathrm{H}(8 \mathrm{a}) ; \delta=\mathrm{H}(1 \mathrm{a})-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(7)$ in I-III, VIII-IX, XXI, and XXIII, and $\delta=\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(7)-\mathrm{H}(7 \mathrm{a})$ in IV-VII, XII-XIX, XXII, and XXIV.

[^2]Table 1. Relative Energies [kcal/mol] ${ }^{4}$) and Selected Dihedral Angles [$\left.\left.{ }^{\circ}\right]^{\mathrm{b}}\right)$.

Species	$\Delta \Delta H_{\text {f }}$	$\Delta E_{\text {tot }}$	α	β	γ	δ	Analogue
I	0.0	0.0	32	6	-177	-17	
II	3.5	3.9	40	-174	175	12	
III	6.5		49	-173	-5	-6	
IV	11.7	10.3	1	-25	78	-143	
V	12.0	9.4	4	-138	-100	-19	
VI	15.2		-2	-18	53	106	
VII	16.1		3	-131	67	-6	
VIII	0.0	0.0	40	6	-177	-11	I
VIIIa ${ }^{\text {c }}$)	1.8	3.2	22	5	-178	-21	
VIIIb ${ }^{\text {c }}$	1.3		18	5	-178	-29	
IX	3.4	3.2	43	-173	177	-9	II
X	3.4		46	-2	9	103	
XI	7.0		46	-171	-6	-7	III
XII	6.89	10.1	-2	25	-78	142	IV
XIII	6.94		0	-23	79	-141	IV
XIV	7.28	7.7	3	-136	-102	-17	V
XV	7.34		-5	135	101	18	V
XVI	10.39		-3	-18	53	107	VI
XVII	10.23		1	20	-54	-101	VI
XVIII	11.06		2	-129	66	-4	VII
XIX	11.33		-4	134	-65	9	VII
$\mathbf{X X}^{\text {d }}$)	0.0	0.0	-6	18	-121	${ }^{\text {e }}$)	
XXI	7.8	21.6	54	0	180	-4/115	
XXII	28.2	34.2	-1	56	-53	-69/173	
XXIII	38.7	38.1	-6	-1		2	
XXIV	56.8		-1	11		127	

${ }^{\text {a }}$) $\Delta \Delta H_{\mathrm{f}}$ from differences of AM1 heats of formation, $\Delta E_{\text {tol }}$ from differences of $a b$ initio total energies ($6-31 \mathrm{G}^{*}$ SCF). ${ }^{\text {b }}$) AM1 values, notation see Fig. $(\boldsymbol{\alpha}, \beta, \gamma, \delta)$. ${ }^{\text {c }}$) Maximum dihedral angle $\left(\approx 57^{\circ}\right)$ in the ring.VIIIa $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-$ C(5), VIIIb N(1)-C(2)-C(3)-C(4). ${ }^{d}$) Proton affinities for VIII $+\mathrm{H}^{+} \rightarrow \mathbf{X X}$. a) AM1: $-219.7 \mathrm{kcal} / \mathrm{mol}$ (from heats of formation following the recommended procedure [37]); b) $6-31 \mathrm{G}^{*} \mathrm{SCF}:-245.9 \mathrm{kcal} / \mathrm{mol}$ (from total energies). $\left.{ }^{\text {e }}\right) \mathrm{H}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(7): 150^{\circ}, \mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(7)-\mathrm{H}(7 \mathrm{a}):-7^{\circ}$.
$A b$ initio SCF-MO calculations were performed for selected conformers using the 6 $31 \mathrm{G}^{*}$ basis set [8] [9] and the TURBOMOLE program [10]. The optimized AM1 structures served as starting points for the ab initio geometry optimizations.

Table 1 summarizes the main results. In almost all cases where such comparisons are possible, the AM1 and $a b$ initio calculations yield qualitatively the same types of conformers, with deviations in the relevant dihedral angles of normally less than 5°. Larger deviations which, however, are not important qualitatively occur only for the imines IV and XII (particularly with regard to γ). For the sake of brevity, Table 1 lists only the AM1 dihedral angles. Both the AM1 and ab initio calculations identify I, VIII, and $\mathbf{X X}$ as the most stable species on the three potential surfaces studied, and predict rather similar relative energies for the other conformers and tautomers (with the exception
of XXI). Overall, the AM1 and ab initio results for the geometries and relative energies agree quite well with each other. In the following, we comment on some specific results in Table 1.

In the oxime conformers of acetamide oxime, all heavy atoms lie almost in one plane. The conformational degrees of freedom are associated with rotations around the $\mathrm{N}(1)-$ $\mathrm{C}(2), \mathrm{C}(2)-\mathrm{N}(7)$, and $\mathrm{N}(7)-\mathrm{O}(8)$ bonds (i.e. dihedral angles α, β, and γ, respectively, see Fig.I). The NH_{2} group is nonplanar and always adopts one particular orientation with respect to the $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(7)$ plane $\left(\alpha \approx 32-49^{\circ},-\delta \approx 6-17^{\circ}\right.$ in I-III, see Table 1). With regard to rotations around the $\mathrm{C}(2)-\mathrm{N}(7)$ and $\mathrm{N}(7)-\mathrm{O}(8)$ bonds, the cis/trans-(I), trans/ trans-(II), and trans/cis-(III) conformers are found to be local minima on the AM1 potential surface, whereas there is no minimum for the cis/cis-structure. The most stable form of the oxime is \mathbf{I}, both at the AM1 and the $a b$ initio level ${ }^{5}$). Changing the configuration at the $\mathrm{C}=\mathrm{N}$ bond from (Z) (I) to $(E)(\mathbf{I I})$ increases the energy by 3.5 (AM1) and 3.9 ($a b$ initio) $\mathrm{kcal} / \mathrm{mol}$, respectively. The preference for the (Z)-configuration in \mathbf{I} is consistent with the crystal structure of formamide oxime [12], where ab initio calculations predict a $(Z) v s$. (E) stabilization energy of $3.7 \mathrm{kcal} / \mathrm{mol}$ [13].

Only structures with (E)-configurated $\mathrm{N}(1)=\mathrm{C}(2)$ bond of $2-$ (hydroxyamino)ethanimine were taken into account, since only this configuration is sterically accessible to the cyclic compounds XII-XIX (see below). The imine conformers are essentially planar around the $\mathrm{N}(1)=\mathrm{C}(2)$ bond and nonplanar at $\mathrm{N}(7)$. There are four local minima (IV-VII) on the AM1 potential surface. Both the $\mathrm{N}(7)-\mathrm{O}(8)$ and $\mathrm{N}(7)-\mathrm{H}(7 \mathrm{a})$ bonds can be approximately cis (eclipsed) to the $\mathrm{N}(1)=\mathrm{C}(2)$ bond, and in each of these cases the second substituent at $\mathrm{N}(7)$ can assume two different orientations (see Table 1). The preferred conformers IV and V are calculated to be within a range of $1 \mathrm{kcal} / \mathrm{mol}$, with reverse order at the AM1 and $a b$ initio level. More important, however, is the prediction that all imine conformers (IVVII) are higher in energy than the oxime conformers (I-III), both by the AM1 and $a b$ initio calculations. The energy difference between the most stable oxime and imine conformers is 11.7 (AM1) and 9.4 ($a b$ initio) $\mathrm{kcal} / \mathrm{mol}$, respectively ${ }^{6}$).

There are eight possible chair conformations for the saturated six-membered ring of 5pentanelactam oxime, which are distinguished by the configuration of the $\mathrm{C}(2)=\mathrm{N}(7)$ bond (Z or E), of the $\mathrm{N}(7)-\mathrm{O}(8)$ bond (s-cis or s-trans), and at $\mathrm{N}(1)$ (equatorial or axial substituent $\mathrm{H}(1 \mathrm{a})$, ring inversion). On the AMI potential surface, there are cis/trans (VIII), trans/trans (IX), and trans/cis (XI) minima with equatorial $\mathrm{H}(1 \mathrm{a})$, completely analogous to the corresponding acetamide oximes I-III with regard to both relative energies and geometries (see Table 1). At the AM1 level, there is also a cis/cis (\mathbf{X}) minimum with axial $\mathrm{H}(1 \mathrm{a})$, which disappears at the $a b$ initio level. The remaining four conformers collapse upon geometry optimization to one of the minima (VIII-XI). The

[^3]chairs in VIII-XI are slightly flattened ($\alpha=40-46^{\circ}$), and the orientation of the bonds at $\mathrm{N}(1)$ is surprisingly close to that in the oximes I-III ($\alpha=32-49^{\circ}$, see Table 1). Keeping the favored cisitrans oxime conformation from VIII, we have also located two AM1 minima (VIIIa, VIIIb) with a twist conformation in the six-membered ring which lie slightly above the chair conformer VIII in energy, as expected. Re-optimization of VIIIa at the ab initio level leads to very minor changes in geometry and to a slight increase in the relative energy. Based on these results (see Table 1), we conclude that VIII is the most stable conformer of the cyclic oxime.

The 2,3,4,5-tetrahydro-2-(hydroxyamino)pyridine tautomer adopts only half-chair conformations (XII-XIX), since the $\mathrm{N}(1)=\mathrm{C}(2)$ bond and the adjacent atoms $(\mathrm{C}(3), \mathrm{C}(6)$, and $N(7)$) are approximately coplanar. Inversion of the half-chair leads to two conformations for each of the minima encountered for 2-(hydroxyamino)ethanimine (IVVII), so that there are four pairs of conformers (XII/XIII, XIV/XV, XVI/XVII, XVIII/ XIX). The conformers within a pair are structurally and energetically very similar. All conformers XII-XIX are significantly higher in energy than the most stable oxime VIII, in analogy to the acyclic case (I-VII, see Table 1). The energy difference between the most stable conformers of either of the tautomers is 6.9 (AM1) and 7.7 (ab initio) kcal/ mol, respectively.

Protonation of the cyclic compounds VIII-XIX can occur at $\mathrm{N}(1), \mathrm{N}(7)$, or $\mathrm{O}(8)$. AM1 calculations on many of the resulting protonated species indicate that the relative energies of the various conformers are quite similar to those of the corresponding neutral molecules. Therefore, we only discuss the protonated tautomers XX-XXIV which are derived from the most stable neutral conformers VIII and XII. The lowest-energy tautomer XX can be regarded as VIII protonated at $N(7)$ or as XII protonated at $N(1)$. Judging from the dihedral angles ($\alpha=-6^{\circ}, \beta=18^{\circ}$, see Table 1), the latter description is more adequate: XX adopts a half-chair conformation similar to XII. The second most stable tautomer XXI assumes a chair configuration ($\alpha=54^{\circ}$) with an exocyclic double bond ($\beta=0^{\circ}$) and thus resembles VIII. This is also evident from the optimized bond lengths (see Table 2) which show a strong alternation between $\mathrm{N}(1)-\mathrm{C}(2)$ and $\mathrm{C}(2)-\mathrm{N}(7)$ that is even more pronounced in XXI than in VIII. As expected for an allyl-type system, there is little bond-length alternation in $\mathbf{X X}, \mathrm{N}(1)-\mathrm{C}(2)$ being slightly shorter than $\mathrm{C}(2)-\mathrm{N}(7)$. The remaining tautomers XXII-XXIV are considerably higher in energy (see Table 1).

Table 2. Selected Bond Lengths $[\AA]$ at the $6-31 G^{*} S C F$ Level $\left.)^{b}\right)$

Species	$\mathrm{N}(1)-\mathrm{C}(2)$	$\mathrm{C}(2)-\mathrm{N}(7)$
\mathbf{I}	1.371	1.262
IV	1.257	1.385
VIII	1.374	1.263
XII	1.249	1.397
XX	1.292	1.328
XXI	1.477	1.245

[^4]Thus, according to the quantum-chemical calculations, the acyclic (I-VII) and cyclic (VIII-XIX) model compounds are quite similar with respect to the preferred tautomers and conformers and with regard to structural and energetic details. The oxime form is favored for the neutral species. The most stable conformer (VIII) of 5-pentanelactam oxime is a slightly flattened chair with (Z)-configuration around the exocyclic $\mathrm{C}(2)=\mathrm{N}(7)$ bond. Protonation of VIII leads to a considerable change in geometry, however, since the most stable tautomer XX is best described as a protonated imine (derived from XII), with a half-chair conformation and a pyramidal exocyclic $\mathrm{N}(7)$-atom.
2. Synthesis and Structure of D-Gluconhydroximo-1,5-lactam (= D-Glucono-1,5-lactam Oxime, 7a), Its Nitrogen Isotopomers 7b and 7c, and the N -Arylcarbamates 26-29. To establish the structure of 7 without having to resort to X-ray analysis, we intended to prepare the ${ }^{15} \mathrm{~N}$-labeled isotopomers 7 b and 7 c . The ${ }^{15} \mathrm{~N}$ chemical shift and the ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ coupling of $7 \mathbf{b}$ or $7 \mathbf{c}$ should allow an unambiguous determination of the constitution of 7a, which has been prepared by Ganem and coworkers from nojirilactam [15]. The synthesis of nojirilactam from nojirimycin proceeds in $c a .20 \%$ yield $[16]^{7}$), but the aim of preparing both monolabeled ${ }^{15} \mathrm{~N}$ isotopomers of $\mathbf{7 a}$ and the N -arylcarbamate derivatives 26-29, and the anticipated versatility of protected derivatives of nojirilactam ${ }^{8}$) as synthetic intermediates has prompted us to develop a large-scale synthesis of 2,3,4,6-tetra-O-benzyl-d-gluconolactam (11a, Scheme I) [18] ${ }^{9}$) from 2,3,4,6-tetra-O-benzyl-d-glucose. The synthesis proceeds in an overall yield of 43%; it was easily adapted to the preparation of the ${ }^{15} \mathrm{~N}$-labeled isotopomer 11b and further improved by using freshly prepared pyridine - SO_{3} for the oxidation of 2,3,4,6-tetra- O-benzyl-D-(${ }^{(55} \mathrm{N}$)-gluconamide (30), thus increasing the overall yield to 53%.

Activation of 11a by O-alkylation, similarly to a procedure applied by Ganem and coworkers [15] to transform nojirilactam, yielded the imino ether 12a, which, upon treatment with $\mathrm{NH}_{2} \mathrm{OH}$, gave the benzylated hydroximo-lactam 13a and hence, by Birch reduction [21] and acetylation, the pentaacetate 14 a in $30-40 \%$ overall yield. The same procedure transformed 11c into 14c. Activation of 14a by thionation [22], again similarly to a procedure reported by Ganem and coworkers [15], proceeded in higher yields than O alkylation, but gave an inseparable, crystalline $9: 1$ mixture of the gluco-configurated thionolactam 15a and an isomer, to which the manno-configuration 16a was tentatively assigned. The mixture was treated with $\mathrm{NH}_{2} \mathrm{OH}$ to yield a $10: 1$ mixture of 13a and 17a. Birch reduction and acetylation of this mixture, followed by a tedious chromatography, yielded pure 14a as the major product besides the manno-configurated 18a.
O-Alkylation of the gluconolactam 11a is evidenced by the EtO signals at $1.12(t, J \approx 7.0 \mathrm{~Hz})$ and at 4.18 $\mathrm{ppm}(q, J \approx 7.0 \mathrm{~Hz})$. The imino group of 12 gives rise to a $C(1) s$ at 161.11 ppm , and to a sharp IR band at 1675 cm^{-1}. The thionolactam $15 a$ is characterized by a s at 200.3 ppm , and a $\mathrm{C}=\mathrm{S}$ band at $1545 \mathrm{~cm}^{-1}$. Compared to the

[^5]

a) $\mathrm{Et}_{3} \mathrm{O} \cdot \mathrm{BF}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $26 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{O}^{\circ} \rightarrow$ r.t., $1 \mathrm{~h} ; 50 \%$. b) $\mathrm{NH}_{2} \mathrm{OH}, \mathrm{MeOH}$, r.t., $40 \mathrm{~min} ; 86 \%$. c) $\mathrm{Na}^{2}, \mathrm{NH}_{3}$, THF , reflux, 15 min . d) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP, r.t., 2 h ; 68-78\% from 13a-c. s) 2,4-Bis(4-methoxyphenyl)-2,4-dithioxo-1,3,2,4dithiadiphosphetan (Lawessor's reagent), $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, $6 \mathrm{~h} ; 99 \%$. f) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{NaHCO}_{3}, \mathrm{MeOH}$, reflux, $2 \mathrm{~h} ; 92 \%$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the lactam 11a, the NH and the $\mathrm{H}-\mathrm{C}(2)$ signals are shifted downfield by 2.2 and 0.4 ppm . A second species 16a, closely related to 15a, was characterized by a second set of similar signals. The integration of the $\mathrm{PhCH}_{2} d$ of 15 a at 4.99 ppm and a corresponding d of 16 a at 5.05 ppm gives a ratio of $10: 1$ in favor of the gluco-isomer 15a. The configuration of 15a and of 16a were deduced from those of 14a and 16a (see below), as the NMR spectra of $15 \mathrm{a} / 16 \mathrm{a}$ and of $13 \mathrm{a} / \mathbf{1 7 a}$ were insufficiently well resolved for unambiguous configurational assignments.

The benzylated lactam oxime 13a is characterized by NH, OH, and $\mathrm{C}=\mathrm{N}$ IR bands at 3620,3430 , and 1670 cm^{-1}. Its structure is further evidenced by an exchangeable $\mathrm{NH} s$ at 5.46 ppm , and by a ${ }^{13} \mathrm{C} s$ at 149.79 ppm . Acetylation of 13a to 31a shifted the $\mathrm{C}(1)$ signal downfield by only 3.03 ppm , evidencing the (Z)-configuration ${ }^{10}$). This configuration is confirmed by the X-ray analyses of 7 a (Fig. 2) and of the acetylated 2-phenylcarbamate 21 (Fig. 3).

The J values in the ' H -NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 4 a}(J(2,3)=4.5, J(3,4)=4.5, J(4,5)=9.5 \mathrm{~Hz})$ indicate a $B_{2,5}$ conformation. A H-C(2)-NH W coupling of $c a .1 .5$ and 1.7 Hz is observed for both, 14 a and 18a, respectively. It indicates a planar arrangement of $\mathrm{C}(2), \mathrm{C}(1)$, and $\mathrm{N}(5)$ and is in keeping with a $\mathrm{B}_{2,5}$ conformation of the lactam oxime 14a, and, together with $J(2,3)=3.3, J(3,4)=8.9$, and $J(4,5)=7.5 \mathrm{~Hz}$, with a ${ }^{4} H_{3}$ conformation of the manno-configurated 18a.

Deacetylation (Scheme 2) gave 7a from 14a. The isotopomer 7b, labeled at the endocyclic N -atom, was prepared from 11b via 14b, in close analogy to 7a. The isotopomer 7 c , labeled at the exocyclic N -atom, was obtained by treating the pure imino

[^6]

Fig. 2. ORTEP Representation of 7

Fig. 3. ORTEP Representation of $\mathbf{2 1}$
ether 12a with ${ }^{15} \mathrm{NH}_{2} \mathrm{OH}$, followed by debenzylation, acetylation, and deacetylation, as described for 7a.

Only the structures $\mathbf{7 , 1 3}$, and 14 for the isotopomeric, unprotected, and protected hydroximo-lactams are compatible with the ${ }^{15} \mathrm{~N},{ }^{1} \mathrm{H}$ couplings and the chemical-shift values in the ${ }^{15} \mathrm{~N}$-NMR spectra (Table 3) [6]. The ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ spectra of the hydroximolactams 7b, 13b, and 14b, labeled at the endocyclic position, show doublets and those of $7 \mathrm{c}, 13 \mathrm{c}$, and $\mathbf{1 4 c}$, labeled at the exocyclic position, show singlets, hence, the $\mathrm{C}=\mathrm{N}$ bond must be exocyclic, and the endocyclic N -atom bears the H substituent. This is also evident
Scheme 2

c)

20, 26	$R^{1}=R^{2}=R^{3}=H$	23, 29	$\mathrm{R}^{3}=\mathrm{Cl}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
21, 27	$\mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$	24	$\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{H}$
22, 28	$R^{2}=C l, R^{1}=R^{3}=H$	25	$R^{2}=R^{3}=\mathrm{Cl}, \mathrm{R}^{1}=\mathrm{H}$

a) $\mathrm{NaOMe}, \mathrm{MeOH}, 0^{\circ}, 48 \mathrm{~h} ; 88 \%$. b) $\mathrm{BnNH}_{2}, \mathrm{THF}, 0^{\circ}, 12 \mathrm{~h} ; 64 \%$. c) ArNCO, THF, Et ${ }_{3} \mathrm{~N}$, r.t., $15 \mathrm{~min} ; 62-79 \%$ from 14 a . d) $\mathrm{NaOMe}, \mathrm{MeOH}, 0^{\circ}, 5-7 \mathrm{~h} ; 48-88 \%$.
from the chemical-shift values. The exocyclic ${ }^{15} \mathrm{~N}$ resonates at a far lower field ($\Delta \delta \approx 200$ ppm) than the endocyclic one, in keeping with its essentially trigonal hybridization. The exocyclic $\mathrm{C}=\mathrm{N}$ bond is confirmed by the X-ray analysis of 7 (Fig. 2). Its bond length ($1.294 \AA$) is typical for oximes. The $N(5)-C(1)$ bond $(1.360 \AA)$ is slightly longer than the $\mathrm{N}(5)-\mathrm{C}(1)$ bond in glucono-lactam ($1.326 \AA$) [24], but shorter than the $\mathrm{C}-\mathrm{N}$ bond in piperidines $(1.47 \AA)$. This indicates a hybridization of $N(5)$ between $s p^{3}$ and $s p^{2}$ with a lower s-character than the N -atom in glucono-lactam and a weaker conjugative interaction with the oximino than with the $\mathrm{C}=\mathrm{O}$ group, as predicted by the calculations. This is confirmed by the pyramidalization of $\mathrm{N}-\mathrm{C}(5)$ in 7 , as specified by the distance ($0.23 \AA$) of $\mathrm{N}-\mathrm{C}(5)$ from the plane defined by $\mathrm{H}-\mathrm{N}(5), \mathrm{C}(1)$, and $\mathrm{C}(5)$. By comparison, this distance amounts to $0.01 \AA$ in glucono-lactam and to $0.42 \AA$ in ($1^{\prime} S^{*}, 2 S^{*}, 4 R^{*}$)- 2 -(α-hydroxy-benzyl)-4-phenylpiperidine [25]. In the solid state, 7 adopts a conformation between ${ }^{4} C_{1}$ and ${ }^{4} \mathrm{H}_{3}$ (torsion angle $\left.\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(5)-\mathrm{C}(5):-29.6^{\circ}\right)$, in good agreement with calculations of the model compound, whereas glucono-lactam is an almost perfect ${ }^{4} \mathrm{H}_{3}$ (torsion angle $\left.\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(5)-\mathrm{C}(5):-4.8^{\circ}\right)$ [24]. It is, therefore, not surprising, that 7 adopts a ${ }^{4} C_{1}$ conformation in aqueous solution (cf. Table 4). These findings show a limitation of empirical formulae which correlate hybridization and ${ }^{15} \mathrm{~N},{ }^{1} \mathrm{H}$ coupling constants [26], and which predict sp ${ }^{2}$-hybridization for a ${ }^{15} \mathrm{~N},{ }^{1} \mathrm{H}$ coupling constant of ca. 90 Hz (Table 3).

Table 3. ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ Chemical Shifts $\delta[\mathrm{ppm}]$, Multiplicities, and NH Coupling Constants J [Hz$]$ of ${ }^{15} N$-labeled Lactam Oximes

Compound	Solvent	Endocyclic ${ }^{15} \mathrm{~N}$		Exocyclic ${ }^{15} \mathrm{~N}$
		δ	J	
13b	$\mathrm{C}_{6} \mathrm{D}_{6}$	-306.8 (d)	91	
13c	$\mathrm{C}_{6} \mathrm{D}_{6}$			-101.7 (s)
14b	$\mathrm{C}_{6} \mathrm{D}_{6}$	-308.2 (d)	93	
14c	$\mathrm{C}_{6} \mathrm{D}_{6}$			-81.8(s)
7 b	$\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1$	-305.5 (d)	$65^{\text {a }}$)	
7b	$\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}, 5$ equiv. AcOH	$-280.6^{\text {b }}$)		
7 c	$\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1$			$-125.9(s)$
7 c	$\mathrm{D}_{2} \mathrm{O}, 5$ equiv. AcOH			-209.8)
7 c	(D_{6}) $\mathrm{DMSO}, 1$ equiv. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$			$-215.6^{\text {b }}$)

${ }^{\text {a }}$) Onset of coalescence. ${ }^{\text {b }}$) Proton decoupled.

Addition of AcOH or $\mathrm{CF}_{3} \mathrm{COOH}$ to the isotopomer 7 b results in a shift of the ${ }^{15} \mathrm{~N}$ signal to lower field ($\Delta \delta=25 \mathrm{ppm}$); similarly, addition of AcOH to 7 c causes a shift of the ${ }^{15} \mathrm{~N}$ signal to higher field ($\Delta \delta=84 \mathrm{ppm}$). These strong protonation induced shifts demonstrate the basic character of the hydroximo-lactam 7 , for which we found a $p K_{\mathrm{HA}}$ value of 4.7-4.8 (compare also [4]). The convergent nature of these shifts shows that protonation of 7 leads to a stronger conjugative interaction of the endocyclic N -atom with the hydroxyimino group, as predicted by the calculations. This should result in a planarization of the oxime function. Calculations predict a concomitant change of the ring conformation towards a half-chair; charge and conformation are thus not independent of each other (cf. [4]). Addition of 1 equiv. of $\mathrm{CF}_{3} \mathrm{COOH}$ induces a downfield shift of the signals of $\mathrm{H}-\mathrm{C}(2$ and 5$)$ of 0.31 , of $\mathrm{H}-\mathrm{C}(3$ and 4$)$ of $0.15-0.20$, of $\mathrm{H}^{\prime}-\mathrm{C}(6)$ of 0.04 , and of $\mathrm{H}-\mathrm{C}(6)$ of $c a .0 .1 \mathrm{ppm}$, and a strong overlap of the signals of $\mathrm{H}-\mathrm{C}(3,4$, and 6$)$, with simultaneous change of the coupling pattern. The spectrum (200 MHz) did not change sufficiently upon heating the sample to 65° to allow a conformational analysis of protonated 7a in $\mathrm{D}_{2} \mathrm{O}$.

To evaluate the effect of an O-Ac group on the ${ }^{15} \mathrm{~N}$ chemical shift of the hydroximolactams, we compared the spectra of 13 c and 14 c with those of 4-(tert-butyl)cyclohexanone oxime ($\left.\mathrm{CDCl}_{3}, \delta=-53.3 \mathrm{ppm}\right)$ and its acetate $\left(\mathrm{CDCl}_{3}, \delta=-38.4 \mathrm{ppm}\right)$. The chemical-shift difference in the spectra of these reference compounds ($\Delta \delta=14.9 \mathrm{ppm}$) is similar to the $\Delta \delta$ for 13c and $\mathbf{1 4 c}(19.9 \mathrm{ppm})$. To evaluate the solvent effect in the ${ }^{15} \mathrm{~N}$-NMR spectra of 7c and 13 c , we also recorded the ${ }^{15} \mathrm{~N}$-NMR spectra of acetone oxime in $\mathrm{D}_{2} \mathrm{O}(\delta=-53.3 \mathrm{ppm})$ and in $\mathrm{C}_{6} \mathrm{D}_{6}(\delta=-45.0 \mathrm{ppm})$. For acetone oxime, the solvent induced chemical shift difference ($\Delta \delta=8.3 \mathrm{ppm}$) is considerably smaller than for 7 c and $\mathbf{1 3 c}(\Delta \delta=24.2 \mathrm{ppm})$.

Partial deprotection of $\mathbf{1 4 a}$ with $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ yielded $\mathbf{1 9 a}$, which was treated with the appropriate isocyanates and transformed into the N-arylcarbamates 20-25. Deprotection of the tetraacetates $20-25$ was not trivial, and accompanied by formation of a by-product in trace amounts for 20, but in 5-50\% for 21-25 ((E)-isomer?). This by-product could be
removed by crystallization only, and the monochlorinated phenyl carbamates 27-29 derived from 21-23 were thus purified, while the procedure failed for the dichlorophenyl derivatives. In agreement with the calculations for 5-pentanelactam oxime, the coupling constants in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the deprotected carbamates 26-29 (cf. Table 6) indicate that these compounds adopt a ${ }^{4} C_{1}$ conformation in solution, and, at least in the case of the acetylated 2-chlorophenyl carbamate 21, also in the solid state (torsion angle of $\mathrm{C}(2)-$ $\left.\mathrm{C}(1)-\mathrm{N}(5)-\mathrm{C}(5):-34.3^{\circ}\right)$. The X-ray analysis of 21 (Fig. 3) demonstrates again the exocyclic $\mathrm{C}=\mathrm{N}$ bond, with bond lengths of 1.279 and $1.366 \AA$ for $\mathrm{N}(1)-\mathrm{C}(1)$ and $\mathrm{N}(5)-$ $\mathrm{C}(1)$, respectively.

Abstract

The IR spectra (KBr) of the tetracetylated carbamates $\mathbf{2 0 - 2 5}$ show a single, quite strong NH band (sh.) at ca. $3460 \mathrm{~cm}^{-1}$. Bands due to the $\mathrm{C}=\mathrm{N}$ bond are found between 1650 and $1660 \mathrm{~cm}^{-1}$, and those due to the Ac groups between 1740 and $1755 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$-NMR spectra show NH resonances between $8.35-8.45(\mathrm{PhN} H)$ and the expected signals in the aromatic region. All signals in the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were assigned on the basis of a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-COSY experiment, several ${ }^{1} \mathrm{H}-\mathrm{NMR}$ homo-decoupling experiments, and, with regard to the carbamoyl moiety, according to [27].

The ${ }^{1} \mathrm{H}$-NMR spectra of the deprotected carbamates $26-29$ in (D_{6}) DMSO show the expected $\mathrm{Ar} H$ signals, $\operatorname{ArN} H$ singlets between 9.32 and 9.65 ppm , the ring $\mathrm{NH} s$ at around 6.11 ppm (except for 27 , where it is recorded at 6.38 ppm), and the typical resonances of the ring H of the hydroximo-lactam moiety, three secondary OH and one primary OH group.

3. Evaluation of D-Gluconhydroximo-1,5-lactam (7) and of the N-Arylcarbamates 2629 as Inhibitors. The hydroximo-lactam 7 and the N-arylcarbamates 26-29 - particularly the 2-chlorophenyl carbamate 27 - are strong competitive inhibitors (see Table 4), of β glucosidases from almonds ${ }^{11}$) and from Agrobacterium faecalis. These inhibitors are stronger than D-nojirilactam (32) [28], D-gluconhydroximo-1,5-lactone (1) [29], and the D-gluconhydroximo-1,5-lactone-derived phenyl carbamate 3 [1] [29], presumably due to their weakly basic character. Protonation increases the polar character of the functional group involving the anomeric center and may lead to a stronger interaction with the hypothetical anionic group at the active site of the enzyme. The N-arylcarbamates are indeed among the tightest binding inhibitors yet found [30], and the differences between the isomeric chlorophenyl carbamates suggest a specific interaction at the active site, although it is not clear why the 2-chlorophenyl carbamate 27 is the most potent inhibitor.

Table 4. Inhibition Constants (K_{j}) for Lactone and Lactam Derivatives against the β-Glucosidases from Sweet Almonds (Emulsin) at pH 6.8 and from Agrobacterium faecalis (Abg) at pH 7.0

	Compound	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 2}$
Emulsin	$K_{l}[\mu \mathrm{~mol}]$		43	74	16	13	8	12	21	125
Abg	$K_{l}[\mu \mathrm{~mol}]$	30	1.4		0.6	1.2	0.15	0.9	0.8	5.2

[^7]We thank the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basle, for generous support, and Dr. A. Linden, University of Zurich, for the X-ray analyses.

Experimental Part

General. DMSO was obtained from freshly opened bottles and stored over $4-\AA$ molecular sieves, other solvents were distilled. Reactions were run under Ar. TLC: Merck silica gel $60 F_{254}$ plates; detection by heating with I_{2} soln. $20 \% \mathrm{H}_{2} \mathrm{SO}_{4} 1: 1\left(\mathrm{I}_{2}\right.$ soln.: 10 g of $\mathrm{I}_{2}, 100 \mathrm{~g}$ of KI, $1000 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$) or with mostain [31]. Flash chromatography (FC): silica gel (Merck $60 ; 0.040-0.063 \mathrm{~mm}$). M.p.: uncorrected. Except where noted otherwise, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at $300 \mathrm{MHz},{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra at 50 MHz , and ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ spectra at 40.5 MHz with MeNO_{2} as external reference. Chemical shifts δ in ppm and coupling constants J in Hz .

2,3,4,6-Tetra-O-benzyl-D-($\left.{ }^{15} \mathrm{~N}\right)$ gluconamide (30). At -120°, condensed ${ }^{15} \mathrm{NH}_{3}($ ca. $0.77 \mathrm{~g}, 39 \mathrm{mmol}$) was treated with a soln. of crude $2,3,4,6$-tetra- O-benzyl-d-gluconolactone ($41 \mathrm{~g}, 76 \mathrm{mmol}$) [18] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{ml})$. The mixture was kept at -60° for 6 h , warmed to 15° within 14 h , heated to 40° for 30 min , and evaporated. Excess lactone was separated by FC (hexane/AcOEt $1: 1 \rightarrow \mathrm{AcOEt}$), and treated with NH_{3} as described in [18]. The crude amide $30(8.4 \mathrm{~g})$ was dissolved in boiling $\mathrm{Et}_{2} \mathrm{O}$, and the soln. cooled first to r.t., and then to 5°. Filtration and drying gave $5.12 \mathrm{~g}(24 \%)$ of crystalline $\mathbf{3 0}$. FC of the mother liquor gave $0.75 \mathrm{~g}(3 \%)$ of $\mathbf{3 0}$ as an oil. 'H-NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $6.37(d d, J \approx 86,3.4, \mathrm{NH}) ; 6.59\left(d d, J \approx 86,3.6, \mathrm{NH}\right.$ '). ${ }^{15} \mathrm{~N}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: -279.3 ($t, J \approx 90$). CI-MS (NH_{3}): $559(9)$; $558(42) ; 557\left(100,[M+\mathrm{H}]^{+}\right)$.

2,3,4,6-Tetra-O-benzyl-D-(${ }^{15}$ N)glucono-1,5-lactam (11b) [18]. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 54.51$ (dd, $J=8.9$, $\mathrm{C}(5)) ; 69.65(t) ; 73.39(t) ; 74.56(t, 3 \mathrm{C}) ; 77.38(d) ; 79.26(d d, J=7.6, \mathrm{C}(2)) ; 82.88(d) ; 127.77-128.72$ (several $d) ; 138.44(s) ; 138.85(s) ; 139.01(s) ; 139.14(s) ; 171.33(d, J=13.2, \mathrm{C}(1)) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):-264.8(d t, J=89$, 3.1). CI-MS $\left(\mathrm{NH}_{3}\right): 542(7), 541(37), 540\left(100,[M+\mathrm{H}]^{+}\right), 323(6)$.
(2R,3S,4S,5R)-3,4,5-Tris(benzyloxy)-2-[(benzyloxy)methyll-6-ethoxy-2,3,4,5,-tetrahydropyridine (12a). A soln. of $11 \mathrm{a}(500 \mathrm{mg}, 0.93 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{ml})$ was treated with a 1 m soln. of $\mathrm{Et}_{3} \mathrm{O} \cdot \mathrm{BF}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{ml})$. The mixture was stirred for 20 h at r.t., treated with $1 \mathrm{~m}_{\mathrm{Et}}^{3} \mathrm{OBF} \mathrm{O}_{4}$ soln. (2.8 ml), stirred for 6 h , cooled to 0°, treated with $\mathrm{Et}_{3} \mathrm{~N}(14.6 \mathrm{ml} ; 104.7 \mathrm{mmol})$, and stirred for 1 h at r.t. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$, washing with half-sat. aq. NaHCO_{3} soln., drying of the org. phase $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$), filtration, evaporation, and FC (hexane/AcOEt 3:1) afforded 12a $(221 \mathrm{mg}, 42 \%)$ and $11 \mathrm{a}(108 \mathrm{mg}, 22 \%)$. Solid. $R_{\mathrm{f}}($ hexane $/ \mathrm{AcOEt} 2: 1) 0.70 .[\alpha]_{\mathrm{D}}^{25}=+103.6(c=$ $\left.1.615, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3065 w, 3030 \mathrm{w}, 3000 \mathrm{~m}, 2990 \mathrm{~m}, 2905 \mathrm{~m}, 2890 \mathrm{~m}, 1950 \mathrm{w}, 1875 \mathrm{w}, 1810 \mathrm{w}, 1675 \mathrm{~s}$, $1610 w, 1590 w, 1500 \mathrm{~m}, 1485 \mathrm{w}, 1460 \mathrm{~m}, 1390 \mathrm{w}, 1365 \mathrm{~m}, 1315 \mathrm{w}, 1300 \mathrm{~m}, 1270 \mathrm{w}, 1240 \mathrm{w}, 1190 \mathrm{w}, 1095 \mathrm{~s}, 1070 \mathrm{~s}$ (sh), $1030 s, 915 w, 830 w, 700 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 1.12\left(t, J=7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; 3.67(d d d, J \approx 8.7,4.5$, 2.8; irrad. at 4.08: $d t, J \approx 8.6,2.8, \mathrm{H}-\mathrm{C}(2)) ; 3.81(d d, J=9.2,2.7, \mathrm{CH}-\mathrm{C}(2)) ; 3.85(d d, J=9.2,3.3, \mathrm{CH}-\mathrm{C}(2))$; $3.91(t, J=8.9, \mathrm{H}-\mathrm{C}(3)) ; 3.99(d d, J=9.4,7.4, \mathrm{H}-\mathrm{C}(4)) ; 4.08(d d, J=7.4,1.5$; irrad. at $3.67: d, J=7.3, \mathrm{H}-\mathrm{C}(5))$; $4.18\left(q, J=6.9, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; 4.38(d, J=12.2), 4.45\left(d, J=12.2, \mathrm{PhCH}_{2}\right) ; 4.62\left(\mathrm{AB}, J=10.2, \mathrm{PhCH}_{2}\right) ; 4.74(d, J$ $=11.6), 4.80\left(d, J=11.6, \mathrm{PhCH}_{2}\right) ; 4.93(d, J=11.4), 4.97\left(d, J=11.4, \mathrm{PhCH}_{2}\right) ; 7.02-7.40(\mathrm{~m}, 20$ arom. H$) .{ }^{13} \mathrm{C}-$ NMR (CDCl_{3}): $14.25(\mathrm{q}) ; 60.45(d) ; 61.28(t) ; 70.43(t) ; 73.11(t) ; 74.47(t) ; 74.60(t) ; 74.72(t) ; 77.10(d) ; 79.07$ (d); $83.15(d) ; 127.35-128.78$ (several d) ; $137.97(s) ; 138.34(s) ; 138.44(s) ; 138.55(s) ; 161.11(s) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right):$ $568(8), 567(40), 566\left(100,[M+H]^{+}\right), 504(8), 391(15), 110(8), 52(14)$. Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{NO}_{5}(565.71): \mathrm{C}$ $76.43, \mathrm{H} 6.95, \mathrm{~N} 2.48$; found: C 76.39, H 6.91, N 2.31 .

2,3,4,6-Tetra-O-benzyl-D-gluconhydroximo-1,5-lactam (13a). a) Via 12a. The lactam 11a ($3.100 \mathrm{~g}, 5.77$ mmol) was treated with a 1.0 m soln. of $\mathrm{Et}_{3} \mathrm{O}-\mathrm{BF}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.9 \mathrm{ml})$, stirred at r.t. for 24 h, treated with 1.0 m $\mathrm{Et}_{3} \mathrm{O} \cdot \mathrm{BF}_{4}$ soln. (2.96 ml), and stirred for further $4.5 \mathrm{~h}^{2} \mathrm{Et}_{3} \mathrm{~N}(4.13 \mathrm{ml}, 29.6 \mathrm{mmol})$ was added in such a rate that the temp. was kept $\leq 0^{\circ}$. The mixture was warmed to r.t. within 1 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$, and washed with half-sat. aq. NaHCO_{3} soln. $(20 \mathrm{ml})$. The org. phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, and the filtrate was evaporated. A soln of the residue in dry $\mathrm{MeOH}(45 \mathrm{ml})$ was treated with $4-\AA$ molecular sieves (ca. 2 g) and a soln. of $\left.\mathrm{NH}_{2} \mathrm{OH}[32]^{12}\right)(0.783 \mathrm{~g}, 23.7 \mathrm{mmol})$ in dry $\mathrm{MeOH}(15 \mathrm{ml})$. The mixture was stirred for 40 min . Filtration through Celite, evaporation, and FC (toluene/AcOEt 7:1) gave $13 \mathrm{a}(1.50 \mathrm{~g}, 47 \%)$ and $11 \mathrm{a}(0.98 \mathrm{~g}, 31 \%)$.
b) From $\mathbf{1 5 a} / \mathbf{1 6 a}$ (9:1 mixture of isomers). A soln. of $\mathbf{1 5 a} / \mathbf{1 6 a}(7.25 \mathrm{~g}, 13.09 \mathrm{mmol})$ in dry $\mathrm{MeOH}(150 \mathrm{ml})$ was treated with $\mathrm{NH}_{2} \mathrm{OH} \mathrm{HCl}(1.128 \mathrm{~g}, 16.23 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(1.364 \mathrm{~g}, 16.24 \mathrm{mmol})$, and kept under reflux for 2 h . Filtration, evaporation, and FC (hexane/AcOEt 2:1) gave 13a ($6.637 \mathrm{~g}, 92 \%$) as a $10: 1$ (${ }^{(} \mathrm{H}-\mathrm{NMR}$) mixture in favor of the gluco-epimer. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}$ (552.67): C 73.89, H 6.57, N 5.07 , found: C 74.09, H 6.68, N 5.09.

Data of 13a; R_{f} (hexane/AcOEt 2:1) 0.23. $[\alpha]_{\mathrm{D}}^{25}=+59.2\left(c=0.75, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CCl}_{4}\right): 3620 w, 3430 w, 3240 w$ (br.), $3090 w, 3070 w, 3040 \mathrm{~m}, 2920 \mathrm{~m}, 2860 \mathrm{~m}, 1670 \mathrm{~s}, 1560 \mathrm{w}, 1540 \mathrm{w}, 1500 \mathrm{~m}, 1460 \mathrm{~s}, 1430 \mathrm{w}, 1390 \mathrm{w}, 1365 \mathrm{~m}$, $1320 w, 1260 w, 1210 \mathrm{~m}, 1100 \mathrm{~s}, 1070 \mathrm{~s}(\mathrm{sh}), 1030 \mathrm{~m}, 965 w(\mathrm{sh}), 930 w(\mathrm{sh}), 910 \mathrm{w}, 730 \mathrm{~m}, 700 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):$ $3.42(d d, J=9.9,6.7, \mathrm{H}-\mathrm{C}(6)) ; 3.45(d d, J=5.5,4.2, \mathrm{H}-\mathrm{C}(4)) ; 3.63(d d, J=9.9,3.0, \mathrm{H}-\mathrm{C}(6)) ; 3.64-3.71(\mathrm{~m}, \mathrm{H}-$ $\mathrm{C}(5)) ; 3.84(d d, J=4.3,2.7, \mathrm{H}-\mathrm{C}(3)) ; 3.97(d, J=2.5, \mathrm{H}-\mathrm{C}(2)) ; 4.27(d, J=11.5), 4.44(d, J=11.5, \mathrm{PhCH}) ; 4.33$ $(d, J=11.7), 4.53\left(d, J=11.7, \mathrm{PhCH}_{2}\right) ; 4.38(d, J=12.1), 4.67\left(d, J=12.1, \mathrm{PhCH}_{2}\right) ; 4.44$ (d, partially hidden), $4.47\left(d, J=10.6, \mathrm{PhCH}_{2}\right) ; 5.46(s, \mathrm{NH}) ; 7.04-7.10(m, 2$ arom. H$) ; 7.16-7.45(\mathrm{~m}, 18$ arom. $\mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 51.39(d) ; 69.32(t) ; 70.66(t) ; 71.77(t) ; 72.37(t) ; 73.09(t) ; 74.12(d) ; 80.50(d) ; 82.20(d) ; 127.64-$ 128.36 (several d); $137.54(s) ; 137.72(s, 2 \mathrm{C}) ; 137.89(s) ; 149.79(s)$. CI-MS (NH_{3}): $555(7), 554(38), 553$ (100 , $\left.[M+\mathrm{H}]^{+}\right), 535(9), 429(15), 419(10), 323(8), 321$ (5). Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}(552.67)$: C 73.89, H 6.57, N 5.07; found: C 73.71, H 6.32, N 4.89.

2,3,4,6-Tetra-O-benzyl-D-(5-15 N)gluconhydroximo-1,5-lactam (13b). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 5.98(d, J=91, \mathrm{NH})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}\right)$) $51.94(d d, J=9.9 \mathrm{C}(5)) ; 69.46(t) ; 71.03(t) ; 71.82(t) ; 72.56(t) ; 73.06(t) ; 74.90(d)$; $81.53(d) ; 83.35(d) ; 127.77-129.25$ (several $d) ; 138.44(s) ; 138.51(s) ; 138.58(s) ; 138.93(s) ; 150.10(d, J=13.3$, $\mathrm{C}(1)) . \mathrm{Cl}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 556(7), 555(37), 554$ (100, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 430(10)$.

2,3,4,6-Tetra-O-benzyl-D-glucon(${ }^{\prime 5} \mathrm{~N}$)hydroximo-1,5-lactam (13c). ${ }^{15} \mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(88 \mathrm{mg}, 1.25 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(104 \mathrm{mg}, 1,24 \mathrm{mmol})$ were added to a soln. of $12 \mathrm{a}(519 \mathrm{mg})$ in $\mathrm{MeOH}(20 \mathrm{ml})$. After completion of the reaction (TLC), the solvent was evaporated, and the residue purified by FC (hexane/AcOEt 1:1). Yield: 437 mg $(86 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: identical to that of 13a. CI-MS $\left(\mathrm{NH}_{3}\right): 556(8), 555(37), 554\left(100,[M+\mathrm{H}]^{+}\right), 432(6)$, 430 (16), 324 (7).

N -Acetoxy-2,3,4,6-tetra-O-benzyl-D-gluconhydroximo-I,5-lactam (31a). A soln. of 13 a ($100 \mathrm{mg}, 0.18 \mathrm{mmol}$) in pyridine $(1.2 \mathrm{ml})$ was treated with $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{ml}, 1.06 \mathrm{mmol})$ and stirred for 30 min at r.t. TLC: completion of the reaction. Aq. workup, extraction with CHCl_{3}, and FC (hexane/AcOEt $3: 1$) gave 31a ($63.9 \mathrm{mg}, 60 \%$). Colorless oil. R_{f} (hexane/AcOEt 3:1) $0.28 .[\alpha]_{\mathrm{D}}^{21}=41.1(c=0.57, \mathrm{MeOH})$. IR $\left(\mathrm{CHCl}_{3}\right): 3420 \mathrm{~m}, 3000 \mathrm{~m}, 2920 \mathrm{w}$, $2860 \mathrm{~m}, 1755 \mathrm{~s}, 1645 \mathrm{~s}, 1495 \mathrm{~m}, 1450 \mathrm{~m}, 1360 \mathrm{~m}, 1240 \mathrm{~m}, 1195 \mathrm{~m}, 1090 \mathrm{~s}, 1070 \mathrm{~s}, 695 \mathrm{~s}$. 'H-NMR (CDCl $)^{2} 2.10(\mathrm{~s}$, $\mathrm{AcO}) ; 3.39(d d, J=9.7,7.0, \mathrm{H}-\mathrm{C}(6)) ; 3.43(d d, J=9.6,3.2, \mathrm{H}-\mathrm{C}(4)) ; 3.64(d d, J=9.7,3.2, \mathrm{H}-\mathrm{C}(6)) ; 3.70-3.77$ $(m, \mathrm{H}-\mathrm{C}(5)) ; 3.88(d d, J=3.3,2.3, \mathrm{H}-\mathrm{C}(3)) ; 4.20(d, J=2.3, \mathrm{H}-\mathrm{C}(2)) ; 4.22(d, J=11.8), 4.41(d, J=12.1$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right) ; 4.30(d, J=11.7), 4.56\left(d, J=11.7, \mathrm{PhCH}_{2}\right) ; 4.38(d, J=12.0), 4.45\left(d, J=12.1, \mathrm{PhCH}_{2}\right) ; 4.51(d, J=$ $12.0), 4.68\left(d, J=12.0, \mathrm{PhCH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 19.74(q) ; 51.13(d) ; 68.92(t) ; 70.89(t) ; 71.69(t) ; 72.00(t) ;$ $73.05(t) ; 73.67(d) ; 80.29(d) ; 80.96(d) ; 127.71-128.49$ (several d); $137.12(s) ; 137.38(s) ; 137.47(s) ; 137.55$ (s); $152.82(s) ; 168.27$ (s). CI-MS: 595 (5, $\left.[M+\mathrm{H}]^{+}\right), 432(10), 431$ (35), 429 (6), 366 (6), 365 (24), 337 (12), 325 (12), 324 (40), 323 (100), 321 (12). Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}(594.70)$: C 72.70, H 6.44, N 4.71; found: C 72.67, H 6.69, N 4.48 .

2,3,4,6,N-Penta-O-acetyl-D-gluconhydroximo-1,5-lactam (14a) and 2,3,4,6,N-Penta-O-acetyl-D-mannonhydroximo-1,5-lactam (18a). a) From 13a/17a (10:1). A soln. of 13a/17a (1.196 g, 2.16 mmol) in dry THF (13 ml) was added to a deep blue soln. of $\mathrm{Na}\left(0.50 \mathrm{~g}, 21.7 \mathrm{~g}\right.$-atom) in condensed $\mathrm{NH}_{3}(c a .25 \mathrm{ml})$ at -60° within 5 min . The cooling bath was removed, and the mixture was kept at reflux for 15 min , cooled to -60°, and treated with $\mathrm{NH}_{4} \mathrm{Cl}(1.2 \mathrm{~g}, 22 \mathrm{mmol})$. After evaporation, the residue was dissolved in MeOH , and filtered through Celite. The filtrate was evaporated, and the residue was dissolved in pyridine (10 ml), and treated with $\mathrm{Ac}_{2} \mathrm{O}$ (3 ml) in the presence of a cat. amount of 4-(dimethylamino)pyridine. The mixture was taken to dryness, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ and washed with sat. aq. NaHCO_{3} soln. Drying of the org. phase (MgSO_{4}), evaporation, and FC (hexane/AcOEt $2: 3$) gave 14a ($405 \mathrm{mg}, 47 \%$), 14a/18a ($190 \mathrm{mg}, 22 \%$), and impure 18 a ($94 \mathrm{mg}, 11 \%$) which, upon a second FC, afforded pure 18 a ($23 \mathrm{mg}, 3 \%$).
b) $\mathbf{1 4 a}$ from Pure 13a. Similarly, pure $13 a(1.46 \mathrm{~g}, 2.64 \mathrm{mmol})$ was debenzylated and acetylated to yield 14 a ($0.72 \mathrm{~g}, 68 \%$).

Data of 14a: M.p. 100-101 ${ }^{\circ}$. R_{f} (hexane/AcOEt 1:2) 0.28. $[\alpha]_{\mathrm{D}}^{25}=+89.7\left(c=1.71, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right)$: $3420 \mathrm{w}, 3380 \mathrm{w}, 3020 \mathrm{~m}, 3000 \mathrm{~m}, 1765 \mathrm{~s}, 1660 \mathrm{~s}, 1435 \mathrm{~m}, 1370 \mathrm{~s}, 1245 \mathrm{~s}, 1210 \mathrm{w}, 1195 \mathrm{~s}, 1045 \mathrm{~s}, 1005 \mathrm{~m}, 940 \mathrm{~m}, 910 \mathrm{~m}$, 835w. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: see Tables 5 and 6; AcO: 2.01 (s); $2.03(s) ; 2.07(s) ; 2.08(s) ; 2.12(s) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right)$: see Table 7; AcO: $19.38(q) ; 20.44(q, 2 \mathrm{C}) ; 20.52(q, 2 \mathrm{C}) ; 168.21(s) ; 168.38(s) ; 168.84(s) ; 169.22$ (s); $171.21(s) . \mathrm{Cl}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 404(17), 403\left(100,[M+\mathrm{H}]^{+}\right), 345(8)$. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{10}(402.36): \mathrm{C}$ 47.76, H 5.51, N 6.96, found: C 47.68, H 5.37, N 7.11 .

[^8]Table 5. ${ }^{2} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}\right)$ Chemical Shifts $\delta[\mathrm{ppm}]$ of Lactam Oximes and Lactam-Oxime Carbamates [27] $\left.{ }^{2}\right)$

	H-C(2)	$\mathrm{H}-\mathrm{C}(3)$	$\mathrm{H}-\mathrm{C}(4)$	$\mathrm{H}-\mathrm{C}(5)$	H-C(6)	$\mathrm{H}^{\prime}-\mathrm{C}(6)$	$\mathrm{H}-\mathrm{N}(5)$	ArNH	$\mathrm{H}^{\prime}-\mathrm{C}(2)$	$\mathrm{H}^{\prime}-\mathrm{C}(3)$	$\mathrm{H}^{\prime}-\mathrm{C}(4)$	$\mathrm{H}^{\prime}-\mathrm{C}(5)$	$\mathrm{H}^{\prime}-\mathrm{C}(6)$
14a	5.36	5.19	4.92	3.75	4.31	4.06	5.84						
18a ${ }^{\text {b }}$)	5.89	5.23	5.35	3.63	4.37	4.08	5.68						
19a ${ }^{\text {c }}$)	5.43	5.23	5.02	3.68	4.29	4.03	5.50						
20	5.46	5.23	5.00	3.81	4.28	4.09	5.93	8.35	7.45	7.31	7.09	7.31	7.45
21	5.56	5.33	5.07	3.78	4.28	4.08	5.90	9.04		7.35	7.00	7.27	8.21
22	5.48	5.26	5.03	3.85	4.32	4.13	5.93	8.43	7.61		7.08	7.27	7.35
23	5.47	5.26	5.03	3.85	4.32	4.12	5.98	8.40	7.43	7.30		7.30	7.43
24	5.55	5.32	5.06	3.78	4.29	4.08	5.89	9.03		7.36		7.25	8.19
25	5.43	5.22	4.99	3.83	4.30	4.10	5.93	8.42	7.69			7.37	7.30
$7^{\text {b }}{ }^{\text {d }}$)	4.20	3.70	3.64	3.28	3.81	3.66							
26)	4.26	3.73	3.63	3.29	3.84	3.71				-m	7.19-7.41)		
$27^{\text {d }}$)	4.25	3.72	3.63	3.29	3.83	3.70				7.50	7.23	7.34	7.60
28)	4.26	3.72	3.62	3.28	3.83	3.70			7.51		7.18	m (7.2	-7.35)
29 ${ }^{\text {d }}$)	4.22	3.69	3.60	3.25	3.81	3.67			7.32	7.32		7.32	7.32

[^9]Table 6. 'H-NMR Coupling Constants $J[\mathrm{~Hz}]$ for Lactam Oximes and Lactam-Oxime Carbamates

	$J(2,3)$	$J(3,4)$	$J(4,5)$	$J(5,6)$	$J\left(5,6^{\prime}\right)$	$J\left(6,6^{\prime}\right)$	$J(2, \mathrm{NH})$	$J\left(2^{\prime}, 3^{\prime}\right)$	$J\left(3^{\prime}, 4^{\prime}\right)$	$J\left(4^{\prime} 5^{\prime}\right)$	$J\left(5^{\prime}, 6^{\prime}\right)$	$J\left(2^{\prime}, 4^{\prime}\right)$	$J\left(2,6^{\prime}\right)$	$J\left(3^{\prime}, 5^{\prime}\right)$	$J\left(4^{\prime}, 6^{\prime}\right)$
14a	4.5	4.5	9.5	5.8	2.8	12.3	1.5								
18a	3.3	8.9	7.5	7.0	3.6	11.7	1.7								
19a	6.1	6.3	9.5	6.4	2.9	11.9									
20	4.8	5.0	9.3	6.1	2.9	12.1	1.5	7.5	7.5	7.5	7.5				
21	6.4	6.5	9.1	6.1	2.9	12.1	1.5		7.9	7.6	7.9			1.5	1.5
22	4.6	4.9	9.3	6.4	2.9	12.1	1.5			8.1	8.1	2.0	2.0		2.0
23	4.7	4.9	9.3	6.2	2.9	12.1	1.5	8.9			8.9		2.1	2.1	
24	6.3	6.4	9.1	6.2	2.9	12.1	1.5				8.9			2.5	
25	4.4	4.7	9.3	6.4	2.8	12.1	1.5				8.8		2.4		
7	9.0	9.3	9.2	4.6	2.7	12.0									
26	9.1	9.3	9.1	4.3	2.7	12.1									
27	9.1	9.2	9.1	4.2	2.7	12.1			8.0	8.0	8.0			1.6	1.6
28	9.1	9.3	9.2	4.0	2.7	12.1				7.0	$m 1.9$				
29	9.2	9.3	9.1	4.5	2.7	12.0									

Table 7. ${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right)$ Chemical Shifts $\delta[\mathrm{ppm}]$ for Lactam Oximes and Lactam-Oxime Carbamates $\left.{ }^{\text {a }}\right)$

	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	$\mathrm{O}_{2} \mathrm{CN}$	C(1)	C(2^{\prime})	C(3^{\prime})	C(4')	C(5')	C(6)
14a	150.69	67.63	71.44	69.93	51.99	62.24							
18a	150.56	65.30	69.58	66.16	54.51	64.08							
19a	146.96	67.30	71.94	69.50	51.89	62.84							
20	149.03	67.35	71.72	69.85	51.85	62.34	151.84	136.89	119.51	129.02	124.19	129.02	119.51
21	149.44	66.87	71.27	68.99	52.59	62.50	151.38	133.95	122.95	127.66	124.26	120.24	128.95
22	149.30	67.33	71.71	69.86	51.90	62.32	151.56	138.18	129.98	134.68	119.45	117.44	124.17
23	149.28	67.28	71.66	69.79	51.90	62.29	151.71	135.58	128.95	120.67	129.12	120.67	128.95
24	149.60	66.95	71.36	69.10	52.61	62.54	151.31	132.85	128.85	128.72	123.52	121.00	127.90
25	149.42	67.31	71.74	69.89	51.89	62.29	151.49	136.56	130.49	132.80	127.36	121.02	118.67
7 b)	154.58	68.71	75.01	68.81	57.37	61.18							
$26^{\text {b }}$)	155.48	68.33	74.38	68.87	57.76	60.94	157.17	136.82	129.43	121.33	125.18	121.33	129.43
$27^{\text {c }}$ (d) ${ }^{\text {e }}$))152.21	69.67	75.21	71.16	56.63	61.21	155.49	134.35	134.35	127.79	122.39	124.23	129.29
$28{ }^{\text {c }}$)	152.16	69.52	75.54	70.85	56.59	61.39	155.52	139.99	130.47	133.14	118.25	117.33	122.62
$29{ }^{\text {c }}$)	152.35	69.61	75.63	70.94	56.76	61.53	155.49	137.47	128.64	120.62	126.66	120.62	128.64

Data of 18a: R_{f} (hexane/AcOEt 1:2) 0.23 . IR (CHCl_{3}): 3400w, $3030 \mathrm{w}, 2990 \mathrm{w}, 1750 \mathrm{~s}, 1700 \mathrm{w}$ (sh), 1650 m (sh), $1640 \mathrm{~m}, 1415 \mathrm{w}, 1360 \mathrm{~m}, 1210 \mathrm{~m}$ (br.), $1070 \mathrm{~m}, 1045 \mathrm{~m}, 1000 \mathrm{w}, 950 \mathrm{w}, 930 \mathrm{w}, 900 \mathrm{w}, 870 \mathrm{w}, 840 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}$: see Tables 5 and 6 ; AcO: $2.04(s) ; 2.11(s) ; 2.14(s, 6 \mathrm{H}) ; 2.20(s) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table 7; AcO: $19.60(q) ; 20.44(q)$; $20.59(q, 3 \mathrm{C}) ; 168.55(s) ; 168.85(s) ; 169.40(s) ; 169.52(s) ; 170.56(s)$. CI-MS $\left(\mathrm{NH}_{3}\right): 420\left(5,\left[M+\mathrm{NH}_{4}{ }^{+}\right), 404\right.$ (17), 403 ($\left.100,[M+\mathrm{H}]^{+}\right), 345$ (18).

2,3,4,6,N-Pentaacetyl-D-glucon(5-15 N) hydroximo-1,5-lactam (14b). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 1.58$ (s, $\mathrm{AcO}) ; 1.58(s, \mathrm{AcO}) ; 1.59(s, \mathrm{AcO}) ; 1.66(s, \mathrm{AcO}) ; 1.89(s, \mathrm{AcO}) ; 3.40-3.44(m, \mathrm{H}-\mathrm{C}(5)) ; 3.83(d t, J \approx 11.8,5.2$, $\mathrm{H}-\mathrm{C}(6)) ; 3.93\left(d t, J \approx 12.2,4.4, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 5.18(d d, J \approx 9.4,6.0, \mathrm{H}-\mathrm{C}(4)) ; 5.56(t, J \approx 5.7, \mathrm{H}-\mathrm{C}(3)) ; 5.77(d, J=$ $5.6, \mathrm{H}-\mathrm{C}(2)) ; 5.79(d d, J=93,0.9, \mathrm{NH})$.

2,3,4,6,N-Pentaacetyl-D-($\left.{ }^{15} \mathrm{~N}\right)$ gluconhydroximo-1,5-lactam (14c). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: identical to that of 14a. CI-MS $\left(\mathrm{NH}_{3}\right): 406(4), 405$ (18), $404\left(100,[M+\mathrm{H}]^{+}\right)$.

2,3,4,6-Tetra-O-benzyl-D-glucothionolactam (15a). A mixture of 2,3,4,6-tetra-O-benzyl-D-glucono-1,5$\operatorname{lactam}(11 \mathrm{a}, 7.04 \mathrm{~g}, 13.09 \mathrm{mmol})$ [18] and Lawesson's reagent $(3.44 \mathrm{~g}, 8.51 \mathrm{mmol})$ [22] in dry $\mathrm{C}_{6} \mathrm{H}_{6}(200 \mathrm{ml})$ was heated to reflux for 2 h . Evaporation and FC (toluene/AcOEt 20:1) gave 15 a (7.25 g , 99%.) which was crystallized from hexane/AcOEt to give a $9: 1$ mixture $\mathbf{1 5 a} / \mathbf{1 6 a}$ (${ }^{1} \mathrm{H}-\mathrm{NMR}$) with $\mathbf{1 5 a}$ as the major constituent. M.p. 85-86 (hexane/AcOEt; 1 st fraction of epimeric mixture). R_{f} (toluene/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$) 0.25 . IR (KBr): 3145 m , $3055 w, 3020 \mathrm{~m}, 2900 \mathrm{~m}, 2860 \mathrm{~m}, 1605 \mathrm{w}, 1545 \mathrm{~s}, 1520 \mathrm{w}$ (sh), $1495 \mathrm{~m}, 1460 \mathrm{w}$ (sh), $1455 \mathrm{~s}, 1410 \mathrm{~m}, 1400 \mathrm{~m}, 1360 \mathrm{~m}$, $1345 \mathrm{~m}, 1320 \mathrm{~m}, 1280 \mathrm{w}, 1255 \mathrm{w}, 1230 \mathrm{w}, 1205 \mathrm{~m}, 1165 \mathrm{~m}, 1135 \mathrm{~s}, 1160 \mathrm{~s}$ (sh), $1095 \mathrm{~s}, 1060 \mathrm{~s}, 1025 \mathrm{~m}, 990 \mathrm{~m}, 935 \mathrm{w}$, $905 m, 855 w, 820 w$. 'H-NMR (CDCl_{3}; gluco-epimer): 3.35 ($d d, J=9.8,7.3, \mathrm{H}-\mathrm{C}(6)$); 3.54 ($d d, J=9.4,4.7, \mathrm{H}-$ $\mathrm{C}(4)) ; 3.60\left(d d, J=9.8,3.3, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.85(m, \mathrm{H}-\mathrm{C}(5)) ; 3.87(t, J=4.5, \mathrm{H}-\mathrm{C}(3)) ; 4.32(d, J=11.4, \mathrm{PhC} I)$; $4.40-4.44(m, 3 \mathrm{PhCH}, \mathrm{H}-\mathrm{C}(2)) ; 4.55(d, J=11.5), 4.64\left(d, J=11.5, \mathrm{PhCH}_{2}\right) ; 4.71(d, J=11.5), 4.99(d, J=11.5$, $\left.\mathrm{PhCH} \mathrm{P}_{2}\right) ; 7.10-7.20(\mathrm{~m}, 2$ arom. H$) ; 7.21-7.36(m, 16$ arom. H$) ; 7.42-7.37(m, 2$ arom. H$) ; 8.16(s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} ;\right.$ gluco-epimer): $55.91(d) ; 68.24(t) ; 72.44(t) ; 72.51(t) ; 72.69(t) ; 73.32(t) ; 78.32(d) ; 81.26(d) ; 82.44$ $(d) ; 127.67-128.60$ (several d); $137.03(s) ; 137.33(s, 2 \mathrm{C}) ; 137.44(s) ; 200.29(s)$. CI-MS $\left(\mathrm{NH}_{3} ;\right.$ epimeric mixture): $556(11), 555(36), 554$ (100, $\left.[M+\mathrm{H}]^{+}\right), 449(10), 448(38), 446(18), 338(37), 108$ (14). Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}(553.71$; epimeric mixture): C $73.75, \mathrm{H} 6.37, \mathrm{~N} 2.53, \mathrm{~S} 5.79$; found: C $73.80, \mathrm{H} 6.41, \mathrm{~N} 2.50, \mathrm{~S} 5.90$.

2,3,4,6-Tetra-O-acetyl-D-gluconhydroximo-1,5-lactam (19a). A soln. of $14 \mathrm{a}(225 \mathrm{mg}, 0.56 \mathrm{mmol}$) in dry THF (11.2 ml) was cooled to 0°, treated with distilled $\mathrm{PhCH}_{2} \mathrm{NH}_{2}(64 \mu 1,0.59 \mathrm{mmol})$, and stirred for 12 h at 0°. After removal of THF at 0° and $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ at r.t., FC (toluene/ $\mathrm{Et}_{2} \mathrm{O}$ 1:4) gave 19 a ($130 \mathrm{mg}, 64 \%$). Syrup. R_{f} (toluene $/ \mathrm{Et}_{2} \mathrm{O} 1: 4$) $0.28 .[\alpha]_{\mathrm{D}}^{25}=+93.6\left(c=1.045, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3585 w, 3490 \mathrm{~m}, 3270 \mathrm{~m}$ (br.), 3020 m , $2980 \mathrm{~m}, 2970 \mathrm{~m}, 2910 \mathrm{w}, 2860 \mathrm{w}, 1740 \mathrm{~s}, 1655 \mathrm{~s}, 1630 \mathrm{~m}$ (sh), $1470 \mathrm{~m}, 1450 \mathrm{~m}$ (sh), $1420 \mathrm{~m}, 1360 \mathrm{~s}, 1220 \mathrm{~s}, 1030 \mathrm{~s}$, $970 \mathrm{w}, 930 \mathrm{~m}, 915 \mathrm{~m}, 890 \mathrm{~m} .{ }^{\mathrm{H}} \mathrm{H}$-NMR: see Tables 5 and 6; AcO: $2.04(\mathrm{~s}) ; 2.07(\mathrm{~s}) ; 2.10(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$-NMR: see Table 7; AcO: $20.42(q, 4 \mathrm{C}) ; 168.91(s) ; 169.24(s) ; 169.31(s) ; 170.57(s)$. CI-MS (NH_{3}): 362 (15), 361 (100, M $\left.+\mathrm{H}]^{+}\right), 243(5), 225(18), 130(7)$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{9}(360.32)$: C 46.67, H 5.59, N 7.77; found: C 46.84, H 5.50, N 7.78.

General Procedure for the Preparation of the Carbamates 20-25. The mixture resulting from selective deacetylation of $\mathbf{1 4 a}$, as described above, was treated with $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 equiv.) and the appropriate isocyanate (1.1 equiv.), and was stirred for 10 min . After removal of THF and $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ at 40°, FC (hexane/AcOEt $3: 1 \rightarrow$ hexane/AcOEt $2: 3$) of the residue gave the pure carbamates.

O-(2,3,4,6-Tetra-O-acetyl-1,5-dideoxy-1,5-imino-D-glucopyranosylidene)amino N-Phenylcarbamate (20). According to the General Procedure, $14 \mathrm{a}\left(278 \mathrm{mg}, 0.691 \mathrm{mmol}\right.$) was converted to $20(234 \mathrm{mg}, 71 \%)$. Foam. R_{f} (hexane/AcOEt 1:2) 0.69. $[\alpha]_{\mathrm{D}}^{25}=+55.1\left(c=1.75, \mathrm{CHCl}_{3}\right)$. IR (KBr): $3350 s, 3120 w, 3060 w, 3020 w, 2990 w$, $2980 w, 2970 w, 2950 w, 1750 s, 1660 \mathrm{~m}, 1605 \mathrm{~m}, 1550 \mathrm{~m}$ (sh), 1525 s (sh), $1515 \mathrm{~s}, 1445 s, 1370 \mathrm{~s}, 1315 \mathrm{w}, 1300 \mathrm{w}$, $1225 s, 1080 w(\mathrm{sh}), 1045 \mathrm{~s}, 995 w, 940 \mathrm{w}, 905 \mathrm{w}, 865 \mathrm{w}, 835 \mathrm{w}, 760 \mathrm{~m}, 690 \mathrm{~m} .{ }^{\prime} \mathrm{H}-\mathrm{NMR}$: see Tables 5 and 6; AcO: $2.08(s, 6 \mathrm{H}) ; 2.12(s) ; 2.16(s) .{ }^{13} \mathrm{C}-\mathrm{NMR}:$ see Table 7; AcO: $20.58(q, 2 \mathrm{C}) ; 20.69(q, 2 \mathrm{C}) ; 168.64(s) ; 169.12(s) ;$ $169.35(s) ; 170.57(s)$. CI-MS $\left(\mathrm{NH}_{3}\right): 362(16), 361\left(100,\left[M-\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}+\mathrm{H}\right]^{+}\right), 243(4), 225(15)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{10}$ (479.44): C 52.61, H 5.26, N 8.76; found: C 52.87, H 5.04, N 8.64.

O-(2,3,4,6-Tetra-O-acetyl-1,5-dideoxy-1,5-imino-d-glucopyranosylidene)amino N -(2-Chlorophenyl)carbamate (21). According to the General Procedure, 14a ($155 \mathrm{mg}, 0.385 \mathrm{mmol}$) was converted to 21 (123 mg , 62%). White solid. M.p. 93-94 ${ }^{\circ}$ (hexane/Et $\mathrm{E}_{2} / \mathrm{H}_{2} \mathrm{O}$). R_{f} (hexane/AcOEt $1: 2$) $0.78 .[\alpha]_{\mathrm{D}}^{25}=+41.8(c=0.95$, CHCl_{3}). IR (KBr): $3620 w, 3530 w, 3480 w, 3440 \mathrm{~m}, 3000 \mathrm{w}, 2960 w, 2920 w, 2890 w, 1750 \mathrm{~s}$ (br.), $1655 \mathrm{~m}, 1595 m$, $1580 \mathrm{~m}, 1535 \mathrm{~s}, 1465 \mathrm{w}, 1440 \mathrm{~m}, 1380 \mathrm{~m}(\mathrm{sh}), 1370 \mathrm{~m}, 1325 \mathrm{w}, 1300 \mathrm{w}, 1290 \mathrm{w}, 1230 \mathrm{~s}, 1210 \mathrm{~s}, 1190 \mathrm{~s}(\mathrm{sh}), 1130 \mathrm{w}$, $1085 w$ (sh), $1060 \mathrm{~m}, 1030 \mathrm{~s}, 1015 \mathrm{~m}, 995 \mathrm{~m}, 975 w, 950 \mathrm{w}, 930 \mathrm{w}, 915 \mathrm{~m}, 905 w, 860 w, 840 \mathrm{w}, 750 \mathrm{~m}, 715 \mathrm{w}, 700 \mathrm{w}$, 685w, 625w. ${ }^{1} \mathrm{H}$-NMR: see Tables 5 and 6; AcO: 2.07 (s); 2.08 (s); 2.13 (s); 2.15 (s). ${ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table 7; AcO: $20.45(q, 2 \mathrm{C}) ; 20.49(q) ; 20.59(q) ; 168.65(s) ; 169.14(s) ; 169.27(s) ; 170.46(s) . \mathrm{Cl}-\mathrm{MS}\left(\mathrm{NH}_{3}\right) ; 404(15)$, $403\left(88,\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}+\mathrm{H}\right]^{+}\right), 362(14), 361\left(100,\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClNO}+\mathrm{H}\right]^{+}\right), 346(8), 345(53), 319(35,[M-$
$\left.\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClNO}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}+2 \mathrm{H}\right]^{+}$), 318 (37), 304 (7). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{10} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (522.90): C 48.24, H $4.82, \mathrm{~N} 8.04, \mathrm{Cl} 6.78$; found: $\mathrm{C} 48.25, \mathrm{H} 4.82, \mathrm{~N} 8.04, \mathrm{Cl} 7.09$.

O-(2,3,4,6-Tetra-O-acetyl-1,5-dideoxy-1,5-imino-D-glucopyranosylidene)amino N -(3-Chlorophenyl)carbamate (22). According to the General Procedure, 14a ($166 \mathrm{mg}, 0.413 \mathrm{mmol}$) was converted to 22 (140 mg , 66%). White solid. M.p. $91-92^{\circ}$ (hexane/Et O). R_{f} (hexane/AcOEt $1: 2$) $0.72 .[\alpha]_{\mathrm{D}}^{25}=+53.3\left(c=1.52, \mathrm{CHCl}_{3}\right)$. IR (KBr): $3480 \mathrm{w}, 3360 \mathrm{~m}, 3115 w, 3080 \mathrm{w}, 2980 \mathrm{w}, 2950 \mathrm{~m}, 1755 \mathrm{~s}$, 1730 s (sh), $1655 \mathrm{~m}, 1600 \mathrm{~s}, 1580 \mathrm{~m}$ (sh), 1550 m (sh), 1530 s (sh), $1520 \mathrm{~s}, 1490 \mathrm{~m}, 1430 \mathrm{~m}, 1410 \mathrm{~m}, 1380 \mathrm{~m}$ (sh), $1370 \mathrm{~m}, 1335 \mathrm{w}, 1300 \mathrm{~m}$ (sh), $1275 \mathrm{~m}, 1245 \mathrm{~s}, 1205 \mathrm{~s}$, 1170 m (sh), $1120 \mathrm{w}, 1105 \mathrm{~m}, 1085 \mathrm{~m}$ (sh), $1045 \mathrm{~s}, 1000 \mathrm{~m}$ (sh), $950 \mathrm{w}, 925 \mathrm{~m}, 900 \mathrm{w}, 880 \mathrm{w}, 865 \mathrm{w}, 780 \mathrm{~m}, 750 \mathrm{w}$, $725 w, 685 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$: see Tables 5 and 6; AcO: $2.12(s, 6 \mathrm{H}) ; 2.16(s) ; 2.20(s) .{ }^{13} \mathrm{C}$-NMR: see Table 7; AcO: $20.55(q, 2 \mathrm{C}) ; 20.66(q, 2 \mathrm{C}) ; 168.62(s) ; 169.07(s) ; 169.32(s) ; 170.59(s) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 362(16), 361(100,[M$ $\left.-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClNO}+\mathrm{H}^{+}\right), 301(6), 243$ (9), 225 (17). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{10}(513.89)$: C 49.08, H 4.71, N 8.18, Cl 6.90; found: C 48.87 , H $4.95, \mathrm{~N} 8.42, \mathrm{Cl} 7.05$.

O-(2,3,4,6-Tetra-O-acetyl-1,5-dideoxy-1,5-imino-d-glucopyranosylidene)amino N -(4-Chlorophenyl)carbamate (23). According to the General Procedure, 14a ($165 \mathrm{mg}, 0.410 \mathrm{mmol}$) was converted to 23 (144 mg , 68%). Foam. R_{f} (hexane/AcOEt 1:2) 0.72. $[\alpha]_{\mathrm{D}}^{25}=+48.4\left(c=0.875, \mathrm{CHCl}_{3}\right.$). IR (KBr): $3360 s(\mathrm{sh}), 3120 w(\mathrm{sh})$, $2960 \mathrm{w}, 2940 \mathrm{w}, 1750 \mathrm{~s}, 1660 \mathrm{~s}, 1600 \mathrm{~s}, 1590 \mathrm{~s}, 1550 \mathrm{~m}, 1520 \mathrm{~s}$ (sh), $1505 \mathrm{~s}, 1440 \mathrm{~m}, 1410 \mathrm{~s}, 1370 \mathrm{~s}, 1310 \mathrm{~s}, 1240 \mathrm{~s}$ (sh), $1200 \mathrm{~s}, 1120 \mathrm{w}, 1100 \mathrm{~s}(\mathrm{sh}), 1040 \mathrm{~s}, 1010 \mathrm{~s}, 940 \mathrm{w}, 910 \mathrm{w}, 870 \mathrm{w}, 830 \mathrm{~m}, 750 \mathrm{w}, 680 \mathrm{w}(\mathrm{sh}) .{ }^{\text {. }} \mathrm{H}$-NMR: see Tables 5 and 6; AcO: $2.11(s, 6 \mathrm{H}) ; 2.15(s) ; 2.19(s) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table 7; AcO: $20.49(q, 2 \mathrm{C}) ; 20.61(q, 2 \mathrm{C}) ; 168.61(s)$; $169.04(s) ; 169.29(s) ; 170.57$ (s). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{10}$ (513.89): C 49.08, H 4.71, N 8.18, Cl 6.90; found: C 49.37, H 4.99, N 7.98, Cl 6.83 .

O-(2,3,4,6-Tetra-O-acetyl-1,5-dideoxy-1,5-imino-D-glucopyranosylidene)amino N -(2,4-Dichlorophenyl)carbamate (24). According to the General Procedure, 14 a ($161 \mathrm{mg}, 0.40 \mathrm{mmol}$) was converted to 24 (135 mg , 62%). White solid. M.p. $140.5-141.2^{\circ}$ (hexane/Et ${ }_{2} \mathrm{O}$). R_{f} (hexane/AcOEt $1: 2$) 0.76. $[\alpha]_{\mathrm{D}}^{25}=+44.0(c=0.765$, CHCl_{3}). IR (KBr): 3460w, 3340s, 3120w, 3080w, 3020w (sh), 2980w, 2940m, 1770s, $1740 \mathrm{~s}, 1660 \mathrm{~s}$, $1580 \mathrm{~s}(\mathrm{sh})$, $1530 \mathrm{~s}, 1515 \mathrm{~s}, 1460 \mathrm{~m}, 1430 \mathrm{~m}, 1400 \mathrm{~s}, 1380 \mathrm{~s}, 1340 \mathrm{~m}, 1310 \mathrm{~m}, 1240 \mathrm{~s}, 1220 \mathrm{~s}, 1150 \mathrm{~m}, 1130 \mathrm{w}, 1100 \mathrm{~m}, 1060 \mathrm{~s}$, $1040 \mathrm{~s}, 1020 \mathrm{~s}, 1000 \mathrm{~m}, 980 \mathrm{~m}$ (sh), $950 \mathrm{w}, 920 \mathrm{~m}, 910 \mathrm{~m}, 870 \mathrm{~m}, 850 \mathrm{w}, 820 \mathrm{w}, 800 \mathrm{w}, 750 \mathrm{~m}$ (sh), $720 \mathrm{w}, 680 \mathrm{w}, 640 \mathrm{~m}$ (sh), 610 m . ${ }^{\text {'H}} \mathrm{H}$ NMR: see Tables 5 and 6; AcO: $2.07(s) ; 2.08(s) ; 2.13(s) ; 2.14(\mathrm{~s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table 7; AcO: $20.50(q, 2 \mathrm{C}) ; 20.55(q) ; 20.64(q) ; 168.62(s) ; 169.16(s) ; 169.30(s) ; 170.52(s)$. CI-MS (NH3)) $362(15), 361$ (100, [M-C, $\left.\mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NO}+\mathrm{H}\right]^{+}$), 243 (11), 225 (13). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{10}$ (548.33): C 46.00, H 4.23, N 7.66, Cl 12.93; found: C 46.21, H 4.23, N 7.72, Cl 12.76.

O-(2,3,4,6-Tetra-O-acetyl-1,5-dideoxy-1,5-imino-D-glucopyranosylidene)amino N -(3,4-Dichlorophenyl)carbamate (25). According to the General Procedure, 14 ($170 \mathrm{mg}, 0.423 \mathrm{mmol}$) was converted to 25 (184 mg , 79%). White solid. M.p. 106.5-107.5 (hexane/AcOEt). R_{f} (hexane/AcOEt $\left.1: 2\right) 0.71 .[\alpha]_{\mathrm{D}}^{25}=+47.0(c=1.015$, CHCl_{3}). IR (KBr): $3460 \mathrm{~m}(\mathrm{sh}), 3360 \mathrm{~m}, 2940 \mathrm{w}, 1750 \mathrm{~s}, 1650 \mathrm{~m}, 1600 \mathrm{~m}, 1580 \mathrm{~m}, 1520 \mathrm{~s}, 1480 \mathrm{~m}, 1430 \mathrm{w}, 1380 \mathrm{~s}(\mathrm{sh})$, $1335 w, 1300 \mathrm{w}, 1240 \mathrm{~s}, 1210 \mathrm{~s}, 1140 \mathrm{w}, 1050 \mathrm{~s}, 920 \mathrm{w}, 890 \mathrm{w}, 870 \mathrm{w}, 820 \mathrm{w}, 750 \mathrm{w}, 690 \mathrm{w}$. ${ }^{\text {H }} \mathrm{H}$-NMR: see Tables 5 and 6; AcO: $2.09(s, 6 \mathrm{H}) ; 2.13(s) ; 2.16(s) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table 7; AcO: $20.55(q, 2 \mathrm{C}) ; 20.65(q) ; 20.69(q) ; 168.62$ $(s) ; 169.06(s) ; 169.33(s) ; 170.64(s) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 362(20), 361\left(100,\left[M-\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NO}+\mathrm{H}\right]^{+}\right), 243(8), 225$ (5). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{10}$ (548.33): C 46.00, H 4.23, N 7.66, Cl 12.93; found: C 46.21, H 4.31, N 7.91, Cl 12.65 .

General Procedure for the Deacetylation of 14a-c and 20-23. At $0^{\circ}, 5 \mu \mathrm{l}$ of a 0.22 m soln. of NaOMe in MeOH were added to a soln. of the appropriate acetate in MeOH . After completion of the reaction ($5-7 \mathrm{~h}$), the soln. was neutralized (Amberlite IR-120), filtered, and the resin washed with $\mathrm{MeOH}(5-10 \mathrm{ml}$). Evaporation of the filtrate gave the crude polyols.

D-Gluconhydroximo-1,5-lactam (7a). According to the General Procedure, $\mathbf{1 4 a}(246 \mathrm{mg}, 0.611 \mathrm{mmol}$) was converted within 48 h at 0° to $7\left(103 \mathrm{mg}, 88 \%\right.$, after reversed-phase HPLC ($\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 1: 20$) . Colorless crystals. M.p. $159.0-159.5^{\circ}(\mathrm{EtOH}) . R_{\mathrm{f}}\left(\mathrm{MeOH} / \mathrm{AcOEt} / \mathrm{H}_{2} \mathrm{O} 7: 2: 1\right) 0.13$. $[\alpha]_{\mathrm{D}}^{2 i}=67.5(c=0.42, \mathrm{MeOH})$. IR (KBr): 3400 s (br.), $2960 w, 2900 w$ (br.), $1650 s, 1560 w, 1540 w, 1320 \mathrm{~m}, 1100 s(\mathrm{sh}), 1040 s(\mathrm{sh}), 940 w, 870 w .{ }^{1} \mathrm{H}-$ NMR: see Tables 5 and $6 .{ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table 7. ESI-MS: $225\left(40,[M+\mathrm{H}+\mathrm{MeOH}]^{+}\right), 193\left(100,[M+\mathrm{H}]^{+}\right), 64$ (18), 23 (18). Anal. calc. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$ (192.17): C $37.50, \mathrm{H} 6.29$, N 14.58 ; found: $\mathrm{C} 37.76, \mathrm{H} 6.05, \mathrm{~N} 14.29$.

D-(5- $\left.{ }^{15} \mathrm{~N}\right)$ Gluconhydroximo-1,5-lactam (7b). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} 9: 1\right)$: 3.22-3.33 ($\mathrm{m}, \mathrm{H}-\mathrm{C}(5)$); $3.59\left(t, J \approx 9.0, \mathrm{H}-\mathrm{C}(4) ; 3.65(t, J \approx 9.4, \mathrm{H}-\mathrm{C}(3)) ; 3.70(d t, J=11.9,4.6, \mathrm{H}-\mathrm{C}(6)) ; 3.84\left(d t, J=12.0,3.0, \mathrm{H}^{\prime}-\right.\right.$ $\mathrm{C}(6)) ; 4.15(d, J \approx 9.0, \mathrm{H}-(2)) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 195(7), 194\left(100,[M+\mathrm{H}]^{+}\right), 178(7), 142$ (14).

D-Glucon $\left({ }^{15} \mathrm{~N}\right)$ hydroximo-1,5-lactam (7c). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right)$: identical to that of $7 .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): 156.92(\mathrm{~d}$, $J=4.9, \mathrm{C}(1)) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 211\left(11,\left[M+\mathrm{NH}_{4}{ }^{+}\right), 196(6), 195(36), 194\left(100,[M+\mathrm{H}]^{+}\right), 193(8), 178(15), 176\right.$ (7).

O-(1,5-Dideoxy-1,5-imino-D-glucopyranosylidene)amino N-Phenylcarbamate (26). According to the General Procedure, 20 ($157 \mathrm{mg}, 0.327 \mathrm{mmol}$) was converted to 26 (102 mg). Reversed-phase HPLC (MeCN/ $\mathrm{H}_{2} \mathrm{O} 1: 2$) and lyophilization afforded $26(90 \mathrm{mg}, 88 \%) . R_{\mathrm{f}}\left(\mathrm{MeOH} / \mathrm{AcOEt} / \mathrm{H}_{2} \mathrm{O} 7: 2: 1\right) 0.67 .[\alpha]_{\mathrm{D}}^{25}=+12.7(c=$ $0.66, \mathrm{MeOH}$). IR (KBr): 3480 s (br.), $1720 \mathrm{~s}, 1660 \mathrm{~s}, 1605 \mathrm{~s}, 1555 \mathrm{~s}, 1500 \mathrm{w}, 1450 \mathrm{~m}, 1405 \mathrm{~m}, 1320 \mathrm{~m}, 1400 \mathrm{w}$ (sh), $1225 \mathrm{~m}, \mathrm{I} 140 \mathrm{w}, 1110 \mathrm{~m}, 1085 \mathrm{~m}, 1045 \mathrm{~m}, 1025 \mathrm{~m}, 980 \mathrm{~m}, 910 \mathrm{w}, 880 \mathrm{w}, 845 \mathrm{w}, 800 \mathrm{w}, 755 \mathrm{~m}, 690 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 3.18(m, \mathrm{H}-\mathrm{C}(5)) ; 3.24(m, \mathrm{H}-\mathrm{C}(4)) ; 3.37(d t, J=11.5,4.7, \mathrm{H}-\mathrm{C}(6)) ; 3.53(m, \mathrm{H}-\mathrm{C}(3)) ; 3.76$ $\left(d d d, J=11.5,5.7,2.7, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.95(d d, J=6.1,3.9, \mathrm{H}-\mathrm{C}(2)) ; 4.91(t, J=5.7, \mathrm{HO}-\mathrm{C}(6)) ; 5.16(d, J=5.4)$, $5.23(d, J=4.3, \mathrm{HO}-\mathrm{C}(3), \mathrm{HO}-\mathrm{C}(4)) ; 5.52(d, J=3.9, \mathrm{HO}-\mathrm{C}(2)) ; 6.11(\mathrm{~s}, \mathrm{H}-\mathrm{N}(1)) ; 7.04\left(t, J=7.6, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; $\left.7.31\left(t, J=7.6, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 7.50\left(d, J=7.7, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right) ; 9.41(\mathrm{~s}, \mathrm{ArNH})\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table 7. ESI-MS: $386(15), 350\left(10,[M+K]^{+}\right), 334\left(100,[M+\mathrm{Na}]^{+}\right), 312\left(20,[M+\mathrm{H}]^{+}\right), 250(18)$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$ (311.29): C 50.16, H 5.50, N 13.50 ; found: C 50.36, H 5.66, N 13.30.

O-(1,5-Dideoxy-1,5-imino-D-glucopyranosylidene)amino N -(2-Chlorophenyl)carbamate (27). According to the General Procedure, $21(0.126 \mathrm{~g}, 0.245 \mathrm{mmol})$ was converted to 27 (91 mg). Crystallization ($\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$) afforded $41 \mathrm{mg}(48 \%)$. White solid. M.p. $160-161^{\circ} . R_{\mathrm{f}}\left(\mathrm{MeOH} / \mathrm{AcOEt} / \mathrm{H}_{2} \mathrm{O} 7: 2: 1\right) 0.67 .[\alpha]_{\mathrm{D}}^{21}=+9.9(c=0.42$, MeOH). IR (KBr): 3440s (br.), 2950w, 2930w, 2880w, $1780 \mathrm{w}, 1760 \mathrm{~m}, 1725 \mathrm{~s}, 1640 \mathrm{~s}, 1590 \mathrm{~s}, 1580 \mathrm{~m}$ (sh), 1525s, $1465 w, 1440 \mathrm{~s}, 1410 \mathrm{w}$ (sh), $1370 \mathrm{w}, 1350 \mathrm{w}, 1325 \mathrm{w}, 1305 \mathrm{~m}, 1240 \mathrm{w}, 1200 \mathrm{~s}, 1180 \mathrm{~m}$ (sh), $1130 \mathrm{~m}, 1110 \mathrm{~m}, 1060 \mathrm{~s}$, $1020 s, 990 w, 950 w, 900 w, 880 w, 850 w, 830 w, 800 w, 740 s, 710 w, 690 w, 655 w .{ }^{2} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right):$ 3.12-3.23 (m, H-C(5)); 3.27-ca. 3.30 (m, superimposed by DMSO; addn. of $\mathrm{D}_{2} \mathrm{O}: d d, J=9.0,6.3, \mathrm{H}-\mathrm{C}(4)$); 3.41 $(d t, J=11.3,6.0, \mathrm{H}-\mathrm{C}(6)) ; 3.57\left(d d, J=10.2,5.6\right.$; irrad. at $3.93 \mathrm{ppm}: t, J \approx 5.0$; addn. of $\left.\mathrm{D}_{2} \mathrm{O}: t, J=6.2, \mathrm{H}-\mathrm{C}(3)\right)$; $3.76\left(d d d, J=11.2,5.7,2.9, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.93(t, J=5.1, \mathrm{H}-\mathrm{C}(2)) ; 4.90(t, J=5.9, H \mathrm{O}-\mathrm{C}(6)) ; 5.19(d, J=5.5), 5.23$ $(d, J=4.3, \mathrm{HO}-\mathrm{C}(3), \mathrm{HO}-\mathrm{C}(4)) ; 5.62(d, J=4.6$; irrad. at $3.93 \mathrm{ppm}: s, \mathrm{HO}-\mathrm{C}(2)), 6.38(s, \mathrm{H}-\mathrm{N}(5)) ; 7.15(d t, J=$ $7.8,1.3$; irrad. at 7.94: $t, J=7.8, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$); $7.35\left(d t, J=7.3,0.9\right.$; irrad. at $7.94: d d, J=7.3,0.9, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); $7.51(d d$, $\left.J=8.0,1.1 ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 7.94\left(d d, J=7.9,1.1, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 7.94(s, \operatorname{ArNH}) .{ }^{\text {² }}$ C-NMR: see Table 7 . ESI-MS: 386 (5 , $\left.[M+K]^{+}\right), 384\left(15,[M+K]^{+}\right), 370\left(37,[M+N a]^{+}\right), 368\left(100,[M+N a]^{+}\right), 348\left(5,[M+H]^{+}\right), 346\left(15,[M+H]^{+}\right)$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{6}$ (345.74): C 45.16, H 4.66, N 12.15, Cl 10.25; found: C 45.29, H 4.61, N 11.98 , Cl 10.43.

O-(1,5-Dideoxy-1,5-imino-D-glucopyranosylidene) amino N-(3-Chlorophenyl)carbamate (28). According to the General Procedure, $22(142 \mathrm{mg}, 0.276 \mathrm{mmol})$ was converted to $28(86 \mathrm{mg})$. Crystallization $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right)$ afforded $50 \mathrm{mg}(53 \%)$. White solid. M.p. $123-124^{\circ} . R_{\mathrm{f}}\left(\mathrm{MeOH} / \mathrm{AcOEt} / \mathrm{H}_{2} \mathrm{O} 7: 2: 1\right) 0.67 .[\alpha]_{\mathrm{D}}^{25}=+11.8(c=0.68$, MeOH). IR (KBr): 3340 s (br.), 3100 s (sh), 2900w, $1765 \mathrm{~m}, 1730 \mathrm{~m}, 1690 \mathrm{~s}, 1655 \mathrm{~s}, 1635 \mathrm{~s}, 1490 \mathrm{~m}, 1450 \mathrm{w}, 1430 \mathrm{~s}$, $1310 \mathrm{~m}, 1280 \mathrm{~s}, 1210 \mathrm{~s}, 1170 \mathrm{w}, 1150 \mathrm{~m}, 1105 \mathrm{~m}, 1080 \mathrm{~m}, 1020 \mathrm{~s}, 1000 \mathrm{w}$ (sh), $980 \mathrm{w}, 930 \mathrm{w}, 900 \mathrm{w}, 880 \mathrm{~m}, 780 \mathrm{~m}$, $755 m, 710 m, 685 w, 655 w .{ }^{1} \mathrm{H}$-NMR: see Tables 5 and 6 . ${ }^{13} \mathrm{C}$-NMR: see Table 7. ESI-MS: $384\left(6,[M+\mathrm{K}]^{+}\right), 370$ $\left(37,[M+\mathrm{Na}]^{+}\right), 368\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{6}(345.74)$: $\mathrm{C} 45.16, \mathrm{H} 4.66, \mathrm{~N} \mathrm{12.15} ,\mathrm{Cl} \mathrm{10.25;}$ found: C 44.91, H 4.73, N 12.42, Cl 10.07.

O-(1,5-Dideoxy-1,5-imino-d-glucopyranosylidene)amino $\mathrm{N}-(4-$ Chlorophenyl)carbamate (29): According to the General Procedure, 23 ($23.9 \mathrm{mg}, 0.047 \mathrm{mmol}$) was converted to 29 (14.2 mg). Crystallization (toluene/ $\mathrm{MeOH})$ afforded $13.1 \mathrm{mg}, 82 \%$). White solid. M.p. $108-110^{\circ} . R_{\mathrm{f}}\left(\mathrm{MeOH} / \mathrm{AcOEt} / \mathrm{H}_{2} \mathrm{O} 7: 2: 1\right) 0.67 .[\alpha]_{\mathrm{D}}^{25}=+8.7(\mathrm{c}$ $=0.80, \mathrm{MeOH}$). IR (KBr): $3420 \mathrm{~s}(\mathrm{br}$), $2940 \mathrm{w}, 2920 \mathrm{w}, 2880 \mathrm{w}, 2860 \mathrm{w}, 1730 \mathrm{~s}, 1640 \mathrm{~s}, 1600 \mathrm{~m}, 1540 \mathrm{~m}, 1530 \mathrm{~m}$, $1490 \mathrm{~m}, 1400 \mathrm{~m}, 1310 \mathrm{~m}, 1290 \mathrm{w}, 1210 \mathrm{~s}, 1140 \mathrm{w}, 1090 \mathrm{~m}, 1025 \mathrm{~m}, 1010 \mathrm{~m}, 970 \mathrm{w}, 940 \mathrm{w}, 910 \mathrm{w}, 880 \mathrm{w}, 825 \mathrm{~m}, 790 \mathrm{w}$, $750 w, 660 w, 625 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$: see Tables 5 and $6 .{ }^{13} \mathrm{C}-\mathrm{NMR}:$ see Table 7. ESI-MS: $386\left(10,[M+\mathrm{K}]^{+}\right), 384(30$, $\left.[M+\mathrm{K}]^{+}\right), 370\left(35,[M+\mathrm{Na}]^{+}\right), 368\left(100,[M+\mathrm{Na}]^{+}\right), 348\left(3,[M+\mathrm{H}]^{+}\right), 346\left(9,[M+\mathrm{H}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{6}$ (345.74): $\mathrm{C} 45.16, \mathrm{H} 4.66, \mathrm{~N} 12.15, \mathrm{Cl} 10.25$; found: $\mathrm{C} 45.34, \mathrm{H} 4.43, \mathrm{~N} 12.02, \mathrm{Cl} 10.53$.

Enzyme-Inhibition Studies. a) Inhibition of Sweet Almond β-Glucosidase. Inhibition constants $\left(K_{l}\right)$ of compounds listed in Table 4 were determined at 37° using a $0.08 \mathrm{M}^{\mathrm{KH}} \mathrm{H}_{2} \mathrm{PO}_{4} / \mathrm{K}_{2} \mathrm{HPO}_{4}$ buffer (pH 6.8), and 4nitrophenyl β-D-glucopyranoside (Fluka) as substrate. Measurements were started by addition of sweet almond β-glucosidase (Emulsin, Fluka). Enzyme activity was ca. $0.04 \mathrm{U} / \mathrm{ml}$. The increase of absorption per min at 400 nm was taken as velocity for the hydrolysis of the substrate. This increase was linear during all measurements ($1-$ 3 min). K_{M} values were determined by means of Lineweaver-Burk plots [33]. They varied between 3.0 and 3.8 mm . The following substrate concentrations were applied: $19.91,7.47,4.15,2.49,1.66$, and $1.16 \mathrm{mM} . K_{I}$ values were determined by taking the slopes from the Lineweaver-Burk plots and plotting them against four to six inhibitor concentrations. After fitting the data to a straight line, the negative [I]-intercept of this plot gave the appropriate K_{i}.
b) Inhibition of Agrobacterium faecalis β-Glucosidase. Agrobacter β-glucosidase (Abg) was purified as described previously [34]. Buffer chemicals and substrates were obtained from Sigma Chemical Company or $B D H$. Enzyme essays were performed as described in a except that a buffer containing $50 \mathrm{~mm} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 0.1% BSA (pH 7.0) was employed for all assays. Under these conditions the k_{cat} and K_{M} values of Agrobacter β -
glucosidase for 4-nitrophenyl β-D-glucopyranoside are $169 \mathrm{~s}^{-1}$ and $78 \mu \mathrm{M}$, respectively. Estimates of K, values were obtained by measuring rates in a series of cells at a fixed substrate concentration (0.1 mm) in the presence of a range of inhibitor concentrations ($6-10$ concentrations) which encompassed the K_{1} value ultimately determined, generally from $0.3 \times K_{I}$ to $3 \times K_{\text {I }}$. The observed rates were plotted in the form of a Dixon plot [35] and the K_{l} value determined from the intercept of this line with the horizontal line drawn through $1 / V_{\text {max }}$. Full $K_{\text {/ }}$ determinations were performed by measurement of rates at a series of substrate concentrations (typically 7 concentrations) which bracket the K_{M} value (generally $0.15 \times K_{M}$ to $7 \times K_{M}$) in the presence of a range of inhibitor concentrations (typically 5 concentrations) which bracket the $K_{\text {, }}$ value ultimately determined. Data were analyzed by non-linear regression using the program GraFit [36].

REFERENCES

[1] D. Beer, A. Vasella, Helv. Chim. Acta 1986, 69, 267.
[2] M. Horsch, L. Hoesch, A. Vasella, D. M. Rast, Eur. J. Biochem. 1991, 197, 815.
[3] D. R. Wolk, A. Vasella, F. Schweikart, M. G. Peter, Helv. Chim. Acta 1992, 75, 323.
[4] B. Ganem, G. Papandreou, J. Am. Chem. Soc. 1991, 113, 8984.
[5] P. Ermert, A. Vasella, M. Weber, K. Rupitz, S. G. Withers, Carbohydr. Res., accepted.
[6] B. Clement, T. Kämpchen, Chem. Ber. 1985, 118, 3481.
[7] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902.
[8] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
[9] P. C. Hariharan, J. A. Pople, Theoret. Chim. Acta 1973, 28, 213.
[10] M. Häser, R. Ahlrichs, J. Comp. Chem. 1989, 10, 104.
[11] G. La Manna, M. Cignitti, C. E. Notaro, J. Mol. Struct. (THEOCHEM) 1988, 166, 439.
[12] G. A. Jeffrey, J. R. Ruble, R. K. McMullan, D. J. DeFrees, J. A. Pople, Acta Cryst. 1981, B37, 1381.
[13] M. T. Nguyen, T.-K. Ha, J. Mol. Struct. (THEOCHEM) 1982, 88, 127.
[14] P. D. Adeney, W. J. Bouma, L. Radom, W. R. Rodwell, J. Am. Chem. Soc. 1980, I02, 4069.
[15] M. K. Tong, G. Papandreou, B. Ganem, J. Am. Chem. Soc. 1990, 112, 6137.
[16] S. Inouye, T. Tsuruoka, T. Ito, T. Niida, Tetrahedron 1968, 23, 2125.
$[17]$ G. W. J. Fleet, N. M. Carpenter, S. Petursson, N. G. Ramsden, Tetrahedron Lett. 1990, $31,409$.
[18] R. Hoos, A. B. Naughton, A. Vasella, Helv. Chim. Acta 1993, 76, 1802.
[19] Jpn. Kokai Tokkyo Koho, 80,105,666 to Nippon Shinyaku Co. [CA: 94 (1981) 103174e].
[20] H. S. Overkleeft, J. v. Wiltenburg, U. K. Pandit, Tetrahedron Lett. 1993, 34, 2527.
[21] C. M. McCloskey, Adv. Carbohydr. Chem. 1957, 12, 137.
[22] S. Scheibye, B. S. Pedersen, S.-O. Lawesson, Bull. Soc. Chim. Belg. 1978, 87, 229.
$[23]$ B. M. Aebischer, Dissertation Nr. 854, Universität Freiburg, 1983.
[24] H. Ogura, K. Furuhata, H. Takayanagi, N. Tsuzuno, Y. Iitaka, Bull. Chem. Soc. Jpn., 1984, 57, 2687.
[25] P. Beak, W. K. Lee, J. Org. Chem. 1990, 55, 2578.
[26] G. Binsch, J. B. Lambert, B. W. Roberts, J. D. Roberts, J. Am. Chem. Soc. 1964, 86, 5564.
$[27]$ E. P. Trub, E. N. Boitsov, B. M. Tsigin, Zh. Org. Khim. 1983, $19,87$.
[28] M. P. Dale, H. E. Ensley, K. Kern, K. A. R. Sastry, L. D. Byers, Biochemistry 1985, 24, 3530.
[29] S. G. Withers, K. Rupitz, D. Trimbur, R. A. J. Warren, Biochemistry 1992, 31, 9979.
[30] G. Legler, Adv. Carbohydr. Chem. Biochem. 1990, 48, 319.
[31] P. Ermert, A. Vasella, Helv. Chim. Acta 1991, 74, 2043.
$[32]$ C. D. Hurd, Inorg. Synth. 1939, $1,87$.
$[33]$ H. Lineweaver, D. Burk, J. Am. Chem. Soc. 1934, 56, 658.
[34] J. B. Kempton, S. G. Withers, Biochem. 1992, 31, 9961.
$[35]$ M. Dixon, Biochem. 1953, 55, 170.
[36] R. J. Leatherbarrow, 'GraFit', Erithacus Software, Staines.
[37] M. J. S. Dewar, K. M. Dieter, J. Am. Chem. Soc. 1986, 108, 8075.
$[38]$ W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, 'Ab initio molecular orbital theory', WileyInterscience, 1986.

[^0]: ${ }^{1}$) Present address: Laboratorium für Organische Chemie, ETH-Zentrum, Universitätsstrasse 16, CH-8092 Zürich.
 ${ }^{2}$) Present address: Lonza, Riverside, 900 River Road, Conshohocken, PA 19428, USA.

[^1]: ${ }^{3}$) Similarly, the structure of a hydrazino-imine was postulated for the amidrazone $\mathbf{1 0}$. This is at variance with the structure of the semicarbazone 6 [3], the X-ray analysis of which strongly suggests the presence of an exocyclic, (Z)-configurated $\mathrm{C}=\mathrm{N}$ bond. The constitution of this amidrazone remains to be established.

[^2]: ${ }^{4}$) Throughout the text and Schemes, a corresponds to compounds with the natural distribution of N isotopes, \mathbf{b} to ${ }^{15} \mathrm{~N}-\mathrm{C}(5)(=$ endocyclic N$)$-labeled, and \mathbf{c} to ${ }^{15} \mathrm{~N}-\mathrm{C}(1)(=$ exocyclic N$)$-labeled isotopomers.

[^3]: ${ }^{5}$) Previous $a b$ initio studies [11] have considered only a C_{s} structure for acetamide oxime with a planar amino group which lies $0.55 \mathrm{kcal} / \mathrm{mol}$ above the C_{1} minimum (ab initio).
 ${ }^{6}$) To be complete, we have also located several minima for the nitroso and nitrone tautomers of acetamide oxime on the AMI surface. The nitroso and nitrone conformers are calculated to be higher in energy than the most stable oxime \mathbf{I}, by $5.9-8.1$ and $17.6-20.3 \mathrm{kcal} / \mathrm{mol}$, respectively. According to previous $a b$ initio studies on nitrosomethane [14], these tautomers are separated by large barriers from the corresponding oximes. They should not be relevant to the present experimental work.

[^4]: ${ }^{9}$) For comparison [38]: $\mathrm{H}_{3} \mathrm{C}-\mathrm{NH}_{2} 1.453 \AA$ (exp.: $1.471 \AA$), $\mathrm{H}_{2} \mathrm{C}=\mathrm{NH} 1.250 \AA$ (exp.: $1.273 \AA$). ${ }^{\text {b }}$) At the AM1 level, the bonds are consistently longer by $c a .0 .02-0.06 \AA$, but the trends are the same.

[^5]: ${ }^{7}$) Ganem and coworkers [15] reported a modified procedure, but did not indicate the yield.
 ${ }^{8}$) According to [15], the trimethylsilyl-protected nojirithionolactam, but not the acetylated nojirilactam (acetylated D-gluconolactam) is suitable for the preparation of 7. Both compounds were derived from nojirimycin. 3,6-Di-O-benzyl-d-gluconolactam, described by Fleet et al. [17], was not suitable for our purpose.
 ${ }^{9}$) The procedure is based upon a patent [19] but leads to substantially improved yields; a similar procedure has been reported by Pandit and coworkers [20].

[^6]: $\left.{ }^{10}\right) \mathrm{C}(1)$ of tetra- O-benzyl-d-gluconhydroximo-1,5-lactone [23] resonates at 151.43 ppm . Upon acetylation, this signal is shifted downfield by 4.53 ppm . Upon diethylphosphorylation, this signal is shifted downfield by 5.9 ppm for the (Z)-, and by 17.9 ppm for the (E)-configurated hydroximo-lactone.

[^7]: ${ }^{11}$) For 7, a K, value of $13.8 \mu \mathrm{~mol}$ at pH 5.6 has been reported [4].

[^8]: ${ }^{12}$) The preparation of $\mathrm{NH}_{2} \mathrm{OH}$ in situ from $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ and NaHCO_{3} in MeOH or, alternatively, the use of O-(trimethylsilyl)hydroxylamine resulted in similar yields.

[^9]: ${ }^{\text {a }}$) Resonances for AcO: see Exper. Part. ${ }^{\text {b }}$) At $400 \mathrm{MHz} .{ }^{\text {c }}$) Br. s for NOH at 7.85 ppm . d) In $\mathrm{D}_{2} \mathrm{O}$.

