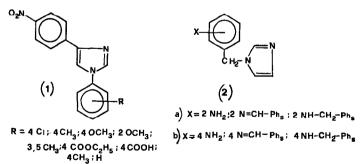
Original paper

Research on anti-bacterial and anti-fungal agents II. Synthesis and anti-fungal activity of new(1H-imidazol-1-ylmethyl)benzenamine derivatives*

Giulio Cesare PORRETTA¹, Mariangela BIAVA¹, Felice CERRETO¹, Marcello SCALZO¹, Salvatore PANICO², Nicola SIMONETTI² and Adelaide VILLA²

¹Istituto di Chimica Farmaceutica e Tossicologica, and ²Istituto di Microbiologia, Facoltà di Farmacia, Università 'La Sapienza', Roma, Italy

(Received December 12, 1986, accepted November 3, 1987)


Summary — The synthesis and *in vivo* and *in vitro* anti-fungal activities of new (*1H*-imidazol-1-ylmethyl)benzenamine derivatives are reported. Anti-microbial data in comparison with miconazole show that many compounds exhibit an interesting anti-mycotic activity.

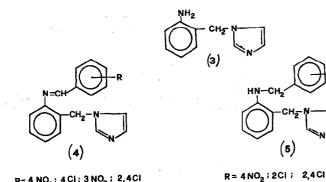
Résumé — Recherche sur des agents anti-bactériens et anti-fongiques II. Synthèse et activité anti-fongique de nouveaux dérivés de la (1H-imidazolyl-1 méthyl)-benzénamine. On a préparé de nouveaux dérivés de la (1H-imidazol-1-ylméthyl)-benzénamine. Leur activité comme fongicides in vivo et in vitro est présentée. De nombreux dérivés ont montré une bonne activité parfois comparable à celle du miconazole.

imidazole anti-fungal agents / anti-fungal activity / (1H-imidazol-1-ylmethyl)benzenamine derivatives

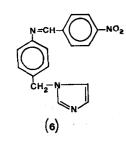
Introduction

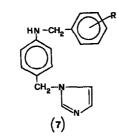
In our previous work concerning compounds containing an imidazole ring, we reported the synthesis and the antimicrobial activity of compounds with general structure 1and 2 [1, 2].

Encouraged by the observed *in vitro* anti-fungal activity of compounds 3–7, we decided to extend our synthesis program to compounds with the general structure 2, which was further supported by data, published by other authors such as Zirngibl [3] Godefroi [4, 5] and Strehlke and Kessler [6–10]. Strehlke in particular showed that N-(2,4-dichlorobenzyl)-2-(1-imidazolyl)aniline and N-(2,4-dichlorobenzyl)- 4-(1-imidazolyl)aniline had interesting anti-fungal activities.


First of all, we wanted to study the structure—activity relationships based upon the following three fundamental parameters: 1) the introduction of an unsubstituted imidazole nucleus not directly connected with the phenyl ring; 2) the presence of an amine group on the phenyl ring in *ortho, meta* and *para* positions; 3) the introduction of suitable substituents on the amine group in accordance with the published data and our previous research on pyrrolnitrin analogues [11—13].

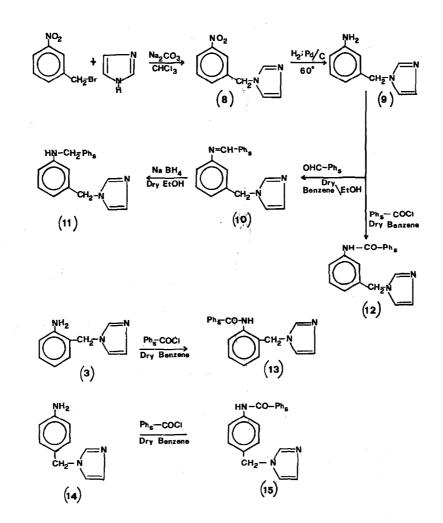
Herein, we report the synthesis and the anti-fungal *in vitro* activities of the 3-(1H-imidazol-1-ylmethyl)benzenamine derivatives 8—11 and of the 2-, 3- and 4-(1H-imidazol-1-ylmethyl)benzenamides 12, 13 and 15. We also report the anti-fungal *in vivo* activities of some *meta* derivatives which showed good activity *in vitro*. Finally, we report the anti-fungal *in vivo* activity of 3 in order to compare the active isomeric compounds 3 and 9.


Chemistry


Synthetic pathways for the title compounds are illustrated in Scheme 1. 3-(1H-imidazol-1-ylmethyl)benzenamine 9 was used as the starting material. The preparation of 9

^{*}This work was supported by a grant from M.P.I., Rome, Italy.

R= 4 NO2; 4 CI; 3 NO2; 2,4 CI



R= 2 C1 ; 4 C1

was accomplished by catalytic hydrogenation on (Pd/C, 10%) of 1-(3-nitrobenzyl)imidazole 8 which was obtained from the reaction between 3-nitrobenzyl bromide and imidazole in dry chloroform in the presence of sodium carbonate. The reaction between 3-(1H-imidazol-1-ylmethyl)benzenamine 9 and the appropriate benzaldehydes afforded the Schiff bases 10, which were further reduced with sodium borohydride in dry ethanol to the corresponding amines 11. From the reaction between appropriate acid chlorides and 3-(1H-imidazol-1-ylmethyl)benzenamine 9, the amides 12 were obtained in quite good yield. Compounds 13 and 15 were prepared in the same way from the corresponding aniline derivatives, which were prepared as previously reported [2].

The structure of derivatives 8-13 was confirmed by elemental analyses and spectral data. The IR, NMR and Mass spectra are in agreement with the proposed structures. Compounds 10 and 11, in particular, showed the NMR chemical shifts and a characteristic fragmentation in agreement with the previously reported values for the corresponding 2- or 4-(1H-imidazol-1-ylmethyl)benzenamine derivatives [2].

Results and Discussion

In vitro activity

The results of the anti-fungal screening are listed in Tables I—IV. Compounds 10g, 10h, 10i, 15o and 9 exhibited some activity against *Candida albicans* while 13e and 10h showed activity against *Candida sp.* 11a, 11f and 11h were more active against *Candida albicans* and *Candida sp.* Among the tested derivatives, the most active compound was 13o which approached miconazole. The remaining compounds showed poor anti-fungal activity.

In vivo activity

The results of the anti-fungal screening are reported in Table V. Lesions treated with 3 disappeared after 4 days of treatment. On the 8th day, all compounds except 130 showed a positive effect compared to the placebo. On the contrary, areas treated with compound 130 and placebo were nearly similar after 10 days of therapy.

From data reported here, the following conclusions can be drawn: 1) in vivo and in vitro activities are not in agreement; 2) the most active derivative in vivo, 3, was in vitro $(R\% = 24, n\overline{X} = 134.5, \text{ range conc. } 25-200 \ \mu\text{g/ml against}$ C. albicans; $R_{0}^{\circ} = 89$, $n\overline{X} = 25$, range conc. 25–200 μ g/ml against C. sp. [2]) less active than compound **130** (the most active in vitro) which was in vivo practically inactive; 3) the above and previous [2] anti-microbial data allow us to confirm that the order of anti-fungal activity for the (1Himidazol-1-ylmethyl)benzenamine derivatives is ortho > *meta* > *para*. This is in contrast with literature data reported by Strehlke with reference to N-(2,4-dichlorobenzyl-2-(1-imidazolyl)-aniline and N-(2,4-dichlorobenzyl)-4-(1-imidazolyl)aniline, but in agreement with the observations pointed out by Strehlke with reference to 2-, 3- or 4-(1imidazolyl-methyl)-phenols which can be considered as isosteric compounds of the (1H-imidazol-1-vlmethyl)benzenamine derivatives; 4) all derivatives 12, 13 and 15 were considered inactive except 130 which in vitro showed nearly the same activity as miconazole; 5) the compounds 10 were found to be less active than the corresponding amino derivatives 11.

Table I. Anti-mycotic activity of miconazole and compounds 15a—o against 25 strains of *Candida albicans* and 7 strains of *Candida sp.*^a at pH 7.2.

Compound	Candida	Candida albicans			Candida sp.				
	<i>R</i> %	$n\overline{X}$	range (µg/ml)	<i>R%</i>	$n\overline{X}$	range (µg/ml)			
Miconazole		1.15	<0.2—3.12		0.97	< 0.2-1.56			
15a	76	158.33	50->200	100		>200			
15b	72	91.96	3.12->200	100		>200			
15c	80	160	100->200	100		> 200			
15d	84	150	100->200	100		>200			
15e	64	100.52	1.56—>200	71	200	200>200			
15f	88	200	200->200	100		>200			
15g	76	83.33	25—>200	100		>200			
15h	76	142.18	3.12 - > 200	86	50	50>200			
15i	68	143.75	50 - > 200	100		>200			
151	72	109.37	$3.12 \rightarrow 200$	86	200	200>200			
15m	88	200	200—>200	100	-	>200			
15n	80	125	25 - 200	100		>200			
150	44	126.45	1.56 > 200	100		>200			

^a2 strains of C. parapsilosis, 1 of C. utilis, 1 of C. wiswanathii, 1 of C. guilliermondii, 1 of C. kruzei and 1 of C. pseudotropicalis.

Table II. Anti-mycotic activity of miconazole and compounds 13a—o against 13 strains of *Candida albicans* and 7 strains of *Candida sp.*^a at pH 7.2.

Compound	Candida	Candida albicans			Candida sp.			
	<i>R</i> %	$n\overline{X}$	range (µg/ml)	R%	nX	range (µg/ml)		
Miconazole	· · · · · · · · · · · · · · · · · · ·	2.3	<0.2-6.25		0.5	<0.2-0.8		
13a	69	125	100->200	86	200	200>200		
13b	69	87.52	< 0.2 - > 200	43	137.5	50>200		
13c	85	150	100->200	71	100	100->200		
13d	85	50	50>200	86	100	100->200		
13e	30	156.25	6.25—>200		173.21	12.5-200		
13f	69	150	100>200	71	106.25	12.5->200		
13g	61	122.66	0.8 - > 200	71	112.5	25>200		
13h	69	112.5	25—>200	86	200	200->200		
13i	69	156.25	25—>200	43	115.62	12.5>200		
13m	54	71.90	0.2->200	100		>200		
13n	77	67.77	0.2>200	86	100	100->200		
130		11.23	0.8—50		13.61	1.56-25		
131	77	166.6	100>200	100		> 200		

⁸2 strains of C. parapsilosis, 1 of C. utilis, 1 of C. wiswanathii, 1 of C. guilliermondii, 1 of C. kruzei and 1 of C. pseudo-tropicalis.

Compound	Candida	albicans		Candida s	<i>p</i> .	
	R%	nX	range (µg/ml)	<i>R</i> %	nX	range (µg/ml)
Miconazole		5.38	<0.2—12.5		0.50	< 0.2-1.50
12a	89	116.66	50>200	100		>200
12b	96	200	200>200	100		> 200
12c	93	200	200>200	100		> 200
12d	85	200	200>200	62.5	166.66	100 - > 200
12e	78	166.66	100>200	50	175	100->200
12f	78	158.33	50>200	62.5	133.33	100 - > 200
12g	85	118.75	25>200	100		>200
12h	89	133.33	200>200	37.5	200	200->200
12i	85	100	50>200	75	200	200->200
121	85	175	100>200	87.5	200	200->200
12m	78	133.33	50>200	75	125	50->200
12n	14	145.31	6.25->200	25	166.66	100->200
120	96	100	100>200	100		>200

Table III. Anti-mycotic activity of miconazole and compounds 12a—o against 27 strains of *Candaida albicans* and 8 strains of *Candida sp.*^a at pH 7.2.

^a3 strains of C. parapsilosis, 1 of C. kruzei, 1 of C. wiswanathii, 1 of C. pseudotropicalis, 1 of C. rugosa and 1 of C. guilliermondii.

Table IV. Anti-mycotic activity of miconazole and compounds 8, 9, 10a—i, 11a—i, against 15 strains of *Candida albicans* and 6 strains of *Candida sp.*^a at pH 7.2.

Compound	Candida	albicans		Candida :	sp.	
	R%	$n\overline{X}$	range (µg/ml)	R%	$n\overline{X}$	range (µg/ml)
Miconazole		5.45	<0.2—12.5		0.55	<0.2-1.56
8	53	96.42	6.25>200	75	100	100->200
9	7	134.97	3.12->200		200	> 200
10a	66	137.5	25>200	75	25	25-200
10b	40	90.97	6.25->200	75	3.12	3.12->200
10c	33	150.62	6.25>200	75	0.4	0.4->200
10d	28	140.31	3.12->200	25	150	50->200
10e	73	165	25>200	75	50	50>200
10f	20	130.72	6.25->200	25	134.37	3.12>200
10g		82.18	1.56-200	25	100.52	1.56 - 200
10h	7	88.56	0.8>200		153.12	12.5-200
10i	7	84.59	3.12->200	25	108.33	25>200
11a		81.5	3.12->200		82.5	12.5 - > 200
11b	28	125	50>200	50	125	50>200
11c	40	155.55	100>200	75	100	100->200
11d	47	115.87	0.4>200	25	141.66	25->200
11e	87	125	50>200	100		>200
11f		156.57	12.5-200		130	50-200
11g	47	112.5	25>200	25	134.37	3.12—>200
11h		41.83	0.4—200		150	50-200
11i	85	75	50200	100		>200

^a1 strain each of C. parapsilosis, C. guilliermondii, C. kruzei, C. lypolytica, C. rugosa and C. macedoniensis.

Table V. Protective action on epidermic lesions in rabbits infected with strains of *Candida Albicans 6*.

Day	Placebo	Miconazole	3	9	11a	11f	11h	130
2	100	100	100	100	100	100	100	100
3	100	100	80	100	100	100	100	100
4	100	100	40	100	100	100	100	100
5	100	100		100	100	100	100	100
6	100	90		90	90	90	90	100
7	100	80		80	80	80	80	90
8	100	65		65	65	65	65	90
9	100	25		25	25	25	25	85
10	100					-		85

Experimental protocols

Chemistry

Melting points uncorrected were taken on a Fisher—Johns apparatus. Infrared spectra (nujol mulls) were run on a Perkin—Elmer spectrophotometer 297. The NMR spectra were recorded on a Varian EM 390 (90 MHz) spectrometer, using deuterochloroform as the solvent and TMS as the internal standard. Mass spectra were obtained with a Hewlett—Packard HP 5980A spectrometer operating at 70 eV. All compounds were analyzed for C, H, N and, when present, Cl, Br, F. The analyzed values were within ± 0.4 of the calculated values. Elemental analyses were performed by A. Pietrogrande, Padova, Italy. Merck aluminum oxide (II—III, according to Brockmann) was used for chromatographic purification.

Values are shown in decreasing order (as a percentage of number of controls) of diameter of lesions in comparison with placebo.

1-(3-Nitrobenzyl)imidazole 8

A suspension of imidazole (13.6 g, 0.2 mol), 3-nitrobenzyl bromide

(Aldrich) (43.2 g, 0.2 mol) and sodium carbonate (21.2 g, 0.2 mol) in 200 ml of dry chloroform was heated at reflux for 6 h with stirring. The solid was filtered and subsequently the organic layer was washed with water and evaporated. The oily residue was dissolved in 1 M HCl and the acid layer was extracted with chloroform which was discarded. The acid layer was made alkaline (pH 10) with sodium carbonate. The resulting precipitate was filtered and dissolved in chloroform. The organic layer was washed with water and dried (Na₂SO₄). The evaporation of the solvent gave a solid (70% yield) which, after crystallization from CCl₄, melted at 95–97°C (lit. 88–89°C from ethylacetate) [15] IR: 1520 and 1340 cm⁻¹ (ν NO₂).

3-(1H-Imidazol-1-ylmethyl)benzenamine 9

A solution of 1-(3-nitrobenzyl)imidazole 8 (17.9 g, 0.088 mol) in 150 ml of ethylacetate was hydrogenated at 60°C (1 atm.) in the presence of 400 mg of 10% palladium on charcoal. When the theoretical amount of H₂ had been taken up the mixture was filtered in order to remove the catalyst and the filtrate was evaporated under reduced pressure to give a solid residue (80% yield) which was crystallized from ethylether (mp: 73–75°C). IR: 3460 and 3420 cm⁻¹ (ν NH₂).

Preparation of Schiff bases 10

To a solution of 0.007 mol of the appropriate benzaldehyde and 0.0066 mol of 9 in 100 ml of dry ethanol were added 50 ml of dry benzene and two drops of glacial acetic acid. The mixture was heated at reflux for 24 h. The water formed during the reaction was eliminated by a Dean-Stark apparatus containing anhydrous sodium sulfate.

Evaporation of the solvent gave a residue which was crystallized from suitable solvent. NMR CDCl₃: δ 5.36–5.40 (s, –CH₂–Im); δ 6.90–6.94 (s, H₃ proton); δ 7.16–7.23 (s, H₂ proton); δ 7.70–7.79 (s, H₁ proton); δ 6.90–8.60 (m, Ar protons); δ 8.80–8.90 (s, –CH=N)

N—). Mass spectra M⁺ 100% = M-67 $\begin{pmatrix} 67 = MW \text{ of } N \\ CH = CH \end{pmatrix}$. Chemical and physical data for compounds 10 are reported in Table VI.

N-(Benzyl)-3-(1H-imidazol-1-ylmethyl)benzenamine 11

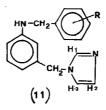

A solution of NaBH₄ (0.009 mol) in 20 ml of dry ethanol was added dropwise at room temperature to a stirred solution of 0.003 mol of appropriate Schiff bases 10 in 20 ml of dry ethanol. Thereupon the mixture was heated with stirring for 2 h at reflux and subsequently evaporated under reduced pressure. The residue was treated with water and chloroform. The organic layer was separated, washed with water, dried on anhydrous sodium sulfate and evaporated. The residue was dissolved in ethylacetate and passed on an aluminum oxide column ($\emptyset = 2$ cm; h = 50 cm). The ethylacetate eluates were discarded then elution was carried out with ethanol. Evaporation of ethanol eluates afforded a solid which was crystallized from suitable solvent. IR: 3420 cm⁻¹ (ν NH). NMR CDCl₃: δ 4.20–4.31 (d, J = 6 cps, $-CH_2-NH-$); δ 5.00–5.20 (s, $-CH_2-Im$); δ 6.00–6.41 (t, J = 6 cps, $-CH_2-NH-$); δ 6.50–6.75 (s, H₃ proton); δ 6.90– 7.25 (s, H₂ proton); δ 7.65–7.78 (s, H₁ proton); δ 6.30–7.70 (m, Ar protons). Mass spectra M⁺ 100% = M-172 (172 = MW of HN–Ph–CH₂–Im). Chemical and physical data for compound 11 are reported in Table VII.

Table VI.

Compd.	R	Yield %	Recryst. solvent	mp °C	Formula
10a	2-Cl	50		a	C ₁₇ H ₁₄ N ₃ Cl
10b	$4-NO_2$	65	benzene	147—149	$C_{17}H_{14}N_4O_2$
10c	3.4.5-OCH3	50	benzene	135-138	C20H21N3O3
10d	$4 - N(CH_3)_2$	40	benzene	160—163	$C_{19}H_{20}N_4$
10e	4-NHCOCH ₃	50	ethylacetate	159-160	$C_{19}H_{18}N_{4}O$
10f	2,4-Cl	60	cyclohexane	119-120	C17H13N3Cl2
10g	$3-NO_2$	45	benzene-light petr.	91—92	C17H14N4O2
10h	4-CI	50	cyclohexane	109—111	C17H14N3Cl
10i	$2-NO_2$	50	benzene-light petr.	92—93	$C_{17}H_{14}N_4O_2$
			· · · · · · · · · · · · · · · · · · ·		

^abp: 153°C/0.035 mm Hg.

Table VII.

	Yield %	Recryst. solvent	mp °C	Formula
2-CI	40	cyclohexane	8586	C ₁₇ H ₁₆ N ₃ Cl
4-NO ₂	50	benzene-light petr.	104—106	$C_{17}H_{16}N_4O_2$
3.4.5-OCH ₃	40	benzenecyclohexane	115—116	C20H23N3O3
			100-102	$C_{19}H_{22}N_4$
4-NHCOCH ₃	50	benzene	178—180	$C_{19}H_{20}N_4O$
2.4-Cl	50	cvclohexane	100-104	$C_{17}H_{15}N_3Cl_2$
,		benzene	176-178	$C_{17}H_{16}N_4O_2$
4-Cl	60	cyclohexane	107-109	$C_{17}H_{16}N_{3}Cl$
$2-NO_2$	40	cyclohexane	38—40	$C_{17}H_{16}N_4O_2$
	4-NO ₂ 3,4,5-OCH ₃ 4-N(CH ₃) ₂ 4-NHCOCH ₃ 2,4-Cl 3-NO ₂ 4-Cl		$4-NO_2$ 50benzene—light petr. $3,4,5$ -OCH340benzene—cyclohexane $4-N(CH_3)_2$ 40cyclohexane $4-NHCOCH_3$ 50benzene $2,4-Cl$ 50cyclohexane $3-NO_2$ 50benzene $4-Cl$ 60cyclohexane	

(1H-Imidazol-1-vlmethvl)benzenamides 12, 13 and 15

A solution of the appropriate acid chloride (0.012 mol) in 20 ml of dry benzene was dropped slowly into a well-stirred solution of the appropriate (1H-imidazol-1-ylmethyl)benzenamine derivatives 3, 9, or 14 (0.012 mol) and triethylamine (0.012 mol) in 60 ml of dry benzene at room temperature, then the solution was heated at reflux for 18 h. The solvent was removed under reduced pressure and the solid was washed with water and the residual precipitate was collected on a filter and washed with water and with light petroleum. Finally the crude solid was crystallized from suitable solvent. IR: 3400 cm⁻¹ (broad) (ν NH); 1680–1640 cm⁻¹ (ν CO). Chemical and physical data for compounds **12**, **13** and **15** are reported in Table VIII.

Microbiological assays

In vitro activity

Derivatives 8, 9, 10a-i, 11a-i, 12a-o, 13a-o and 15a-o were tested against various strains of Candida albicans and various strains

Table VIII.

CH2-N									
Compd.	R		Yield %	Recryst. solvent	mp °C	Formula			
Compd. 13a 13b 13c 13d 13e 13f 13g 13h 13i 13m 13n 13n 13o 12a 12b 12c 12d 12e 12f 12g 12h 12i 12m 12n 12o 15a 15b 15c 15d 15e 15f 15g	R 2-NO ₂ , 4-Cl 3-NO ₂ 4-NO ₂ 2-Cl 3-Cl 4-Cl 2,4-Cl 4-F 4-Br H 3,4,5-OCH ₃ 2,4-NO ₂ 3,5-NO ₂ 2-NO ₂ , 4-Cl 3-NO ₂ 4-NO ₂ 2-Cl 3-Cl 4-Cl 2,4-Cl 4-F 4-Br H 3,4,5-OCH ₃ 2,4-NO ₂ 2-Cl 3-Cl 4-Cl 2,4-Cl 3,5-NO ₂ 2-NO ₂ , 4-Cl 3-S-NO ₂ 2-NO ₂ , 4-Cl 3-NO ₂ 2-NO ₂ , 4-Cl 3-S-NO ₂ 2-NO ₂ , 4-Cl	CH ₂ Im ortho ortho ortho ortho ortho ortho ortho ortho ortho ortho ortho ortho ortho ortho ortho meta para para para para para para para para para	Yield % 50 60 50 80 80 80 80 80 80 80 80 80 80 50 50 40 40 40 40 40 45 50 50 40 40 45 50 50 40 50 50 45 30 50 70 60 70 50 40 80 50 50 50 50 50 50 50 50 50 50 50 50 50	Recryst. solvent ethanol—water (1:1) methanol water acetone acetone methanol acetone chloroform methanol acetone benzene acetone ethanol ethanol ethanol ethanol ethanol ethanol ethanol-water (1:1) ethanol—water (1:1) ethanol—water (1:1) ethanol—water (1:1) ethanol—water (1:1) ethanol—water (1:1) ethanol—water (1:1) ethanol—water (1:1) ethanol ethanol ethanol ethanol ethanol ethanol ethanol ethanol-water (1:1) ethanol ethan	mp °C 156—158 199—201 209—210 168—170 161—162 170—172 168—169 180—181 200—202 141—142 165—168 170—172 194—196 123—125 153—154 220—221 175—177 169—170 190—191 157—159 160—162 200—202 169—170 135—136 229—232 231—232 142—143 222—224 245—247 206—208 188—189 256—258 248—249	Formula $C_{17}H_{13}N_4O_3CI$ $C_{17}H_{14}N_4O_3$ $C_{17}H_{14}N_4O_3$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{13}N_3OCI_2$ $C_{17}H_{14}N_3OF$ $C_{17}H_{13}N_3O$ $C_{20}H_{21}N_3O_4$ $C_{17}H_{13}N_5O_5$ $C_{17}H_{13}N_4O_3CI$ $C_{17}H_{14}N_4O_3$ $C_{17}H_{14}N_4O_3$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OF$ $C_{17}H_{14}N_3OF$ $C_{17}H_{14}N_3OF$ $C_{17}H_{14}N_3OF$ $C_{17}H_{13}N_5O_5$ $C_{17}H_{13}N_5O_5$ $C_{17}H_{13}N_5O_5$ $C_{17}H_{13}N_5O_5$ $C_{17}H_{13}N_5O_5$ $C_{17}H_{13}N_5O_5$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$ $C_{17}H_{14}N_3OCI$			
15h 15i 15l 15m 15m 15n 15o	4-F 4-Br H 3,4,5-OCH ₃ 2,4-NO ₂ 3,5-NO ₂	para para para para para para	70 80 60 50 80 80	ethanol ethanol methanol ethanol—water (1:1) ethanol—water (1:1)	232—233 251—252 198—200 235—236 235—238 280—283	$\begin{array}{c} C_{17}H_{14}N_3OF\\ C_{17}H_{14}N_3OBr\\ C_{17}H_{15}N_3O\\ C_{20}H_{21}N_3O_4\\ C_{17}H_{13}N_5O_5\\ C_{17}H_{13}N_5O_5 \end{array}$			

of different Candida sp. Miconazole was used as the reference compound. The minimum inhibitory concentration (MIC) was determined using the method of progressive double dilution in solid media [14]. Data were recorded after 36 h of incubation at 37°C. Test substances for the experiments were dissolved in dimethyl sulfoxide (DMSO) (5 mg/ml); further dilution in the test medium furnished the required concentration ranging from 0.1 to 200 μ g/ml. The cultures were obtained on Sabouraud (B.B.L.) after 18 h of incubation at 37°C. Tests were carried out using Sabouraud agar (B.B.L.); inocula were 10³ for *Candida*. Medium *MIC* values $n \overline{X}$ (*C*_{max} at least 200 µg/ml) were calculated by the equation: $n\overline{X} = \sum i(s_i \cdot c_i)/s_t$; where s_i is the numbe of sensitive strains at the given concentration c_i and s_t is the whole number of sensitive strains. Strains with $MIC > 200 \ \mu g/ml$ are regarded as resistant (R) and are expressed in percentage by the equation: $R({}_{0}^{\prime}) = (N_{t} - N_{s})/N_{t} \times 100$; where N_{t} is the whole number of tested strains and N_{s} is the number of sensitive strains. The following species of fungi and their different strains isolated from various clinical specimens were tested : 80 Candida albicans strains, 8 Candida parapsilosis strains, 2 Candida utilis strains, 3 Candida wiswanathii strains, 4 Ĉandida guilliermondii strains, 4 Candida kruzei strains, 3 Candida pseudotropicalis strains, 2 Candida rugosa strains, 1 Candida lypolytica strain and 1 Candida macedoniensis strain.

In vivo activity

Six male New Zeland albino rabbits (1.8-2.0 kg) were used. Eight area abrasions (1 cm²/each) for placebo, miconazole and 6 test compounds (3, 9, 130, 11a, 11f and 11h) were prepared on the back sheared with an electric razor (Aesculap rasant) with glass-paper (no. 3) and then infected with strains of Candida albicans 6. 24 h after inoculation, the infected areas were topically treated with a solution (50 μ g/ ml) of the compounds 3, 9, 130, 11a, 11f, 11h, miconazole and placebo supplemented with 0.5% benzyl alcohol in water. The animals were treated topically every 12 h for 10 consecutive days. The diameter and area of the lesions were determined once daily, according to the method proposed by Simonetti [16] and expressed as a percentage value in comparison with the placebo.

References

- Porretta G. C., Scalzo M., Artico M., Biava M., Panico S. & 1 Simonetti N. (1985) Farmaco Ed. Sci 40, 404
- 2 Scalzo M., Biava M., Cerreto F., Porretta G. C., Panico S., Simonetti N. & Villa A. (1986) Farmaco Ed. Sci. 41, 292

- 3 Zirngibl L. (1983) Prog. Drug. Res. 27, 253
- Godefroi E. F., Heeres J., Van Cutsem J. & Jansenn P. A. (1969) 4 J. Med. Chem. 12, 784
- Godefroi E. F., Geenen J. J. H., Van Klingeren B. & Van Wijn-5 gaarden L. J. (1975) J. Med. Chem. 18, 530 Strehlke P., Hoyer G. A. & Schroder E. (1975) Arch. Pharmaz.
- 6 308, 94
- 7 Strehlke P. (1979) Eur. J. Med. Chem. 14, 227
- Strehlke P. & Kessler H. J. (1979) Eur. J. Med. Chem. 14, 231 Strehlke P. & Kessler H. J. (1979) Eur. J. Med. Chem. 14, 238 8
- q
- 10 Strehlke P. & Kessler H. J. (1979) Eur. J. Med. Chem. 14, 243
- Filacchioni G., Porretta G. C., Scalzo M., Giardina M. C. & Giardi T. (1983) Farmaco Ed. Sci. 38, 630 11
- 12 Cecchi L., Melani F., Palazzino G., Filacchioni G. & Porretta G. C. (1984) Farmaco Ed. Sci. 39, 888
- Porretta G. C., Chimenti F., Biava M., Bolasco A., Scalzo M., Panico S., Simonetti N. & Villa A. (1984) Farmaco Ed. Sci. 40, 13 589
- Shadomy S. & Espinel A. (1980) in: Manual of Clinical Micro-14 biology, 3rd edn. Am. Soc. Microbiol., Washington, D.C., p. 647
- 15 Baggaley K. H., Heald M., Hindley R. M., Morgan B., Tec J. L. & Green J. (1975) J. Med. Chem. 18, 833 Simonetti N. & Strippoli V. (1973) Mycopatol. Mycol. Appl.
- 16 51, 19