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Abstract

Heterodiene cycloadditions of (S,S)-4,5-bis(o-tolyl)-2-methylene-1,3-dioxolane1 with a series of substituted
�-amido-�,�-unsaturated carbonyl compounds are diastereoselective (dr�4:1). The cycloadducts fromN-(2-(1-
oxoethyl)-3-oxobut-1-enyl)ethanamide2a can be purified by crystallisation and hydrolysed with acid to generate
the corresponding�-amidoacetic esters, the sequence providing an auxiliary-based stereoselective route to such
compounds. © 2000 Elsevier Science Ltd. All rights reserved.
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The [4�+2�] cycloaddition of�,�-unsaturated carbonyl compounds (1-oxabutadienes) to alkenes
can be an efficient route to dihydropyrans1 and the process has been exploited in synthesis.2 We have
developed a series of auxiliary-basedC2-symmetric ketene acetals, e.g. 1, for use as the 2� components
of such reactions,3,4 and herein describe the results of a recently initiated study of their potential as a
source of homochiral�-amino acid derivatives (Scheme 1), which are valued synthetic intermediates.5

Related heterodiene cycloadditions have been used en route to racemic aminosugars6 and carbapenem
precursors,7 but a variant capable of providing useful levels of asymmetric induction remains an attractive
target.

Scheme 1.
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Our study was initiated with the simple amidodiene2a,8 whose reaction with 1 equivalent of the
ketene acetal14 in THF at �15°C over 5 days yielded a mixture of the cycloadducts3a and 4a in
fair yield and a diastereoisomeric ratio (dr) of ca. 4:1 as judged by 250 MHz1H NMR spectroscopy
(Table 1).9 Crystallisation of the mixture from isohexane (mainly 2-methylpentane) gave the cycloadduct
3a as colourless needles, m.p. 112–115°C. Cycloadditions of1 with the �-acetamidoenoates2b7 and
2c proceeded in similar fashion. Crystallisation of the mixed products from2b yielded3b as a single
isomer, while the purity of3cwas significantly improved by trituration with isohexane. The heterocyclic
aldehyde5, prepared from 1,3-dimethyluracil by Vilsmeier formylation,10 was also found to react
diastereoselectively with1, producing the fused spirocyclic pyrimidines6+7 in moderate yield.

Scheme 2.

Table 1

The ortholactone function of the cycloadducts3a+4a was hydrolysed upon brief treatment with acid
(0.1 M H2SO4, THF, 1 h), which generated the diastereoisomeric�-amidoesters8 (56%) in essentially
the same ratio (4.25:1 by1H NMR spectroscopy) as the educt mixture. In principle, the amidoesters8
offer a second opportunity to isolate pure stereoisomers prior to the removal and recovery of the auxiliary
(S,S)-1,2-bis(o-tolyl)ethane-1,2-diol.4,11

The 4Sconfiguration at the newly-generated stereocentre in the major products3 is proposed on the
basis of the cycloaddition model9, analogous to that advanced previously.3,4 The hydrogen-bonded
reacting conformations of the dienes (as depicted in Scheme 2) are supported for2a by the results
of molecular modelling12 and for the esters2b and2c by the 13C NMR studies described by Bayles
et al.,7 which indicated that the preparative routes to these compounds predominantly gave rise to the
E-geometry shown. The preferential formation of6 from the uracil-derived aldehyde5 is tentatively
suggested on the basis of the results obtained using the structurally similar heterodiene, chromone-3-
carbaldehyde.3

The above results suggest that the sequence outlined in Scheme 1 could provide an effective stereo-
selective route to a variety of functionalised�-amino carbonyl systems based on a recyclable auxiliary
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strategy. Further synthetic and X-ray diffraction studies,13 which should confirm stereochemical assign-
ments, are in progress and will be described in due course.
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