Journal Pre-proof

Ruthenium-catalyzed Suzuki coupling of anilines with alkenyl borates via selective aryl C-N bond cleavage

Jian-Xing Xu, Fengqian Zhao, Robert Franke, Xiao-Feng Wu

PII:	S1566-7367(20)30085-6
DOI:	https://doi.org/10.1016/j.catcom.2020.106009
Reference:	CATCOM 106009
To appear in:	Catalysis Communications
Received date:	16 March 2020
Revised date:	2 April 2020
Accepted date:	2 April 2020

Please cite this article as: J.-X. Xu, F. Zhao, R. Franke, et al., Ruthenium-catalyzed Suzuki coupling of anilines with alkenyl borates via selective aryl C-N bond cleavage, *Catalysis Communications* (2019), https://doi.org/10.1016/j.catcom.2020.106009

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier.

Ruthenium-Catalyzed Suzuki Coupling of Anilines with Alkenyl Borates via Selective Aryl C-N Bond Cleavage

Jian-Xing Xu,^{a‡} Fengqian Zhao,^{a‡} Robert Franke,^b and Xiao-Feng Wu^{*a}

a. Leibniz-Institut für Katalyse an der Universität Rostock e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany, E-mail: xiao-feng.wu@catalysis.de

b. Evonik Industries AG, Paul-Baumann-Str. 1, D-45772 Marl, Germany, and Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany

‡ Jian-Xing Xu and Fengqian Zhao contributed equally

Keywords: Ruthenium Catalyst; Aniline; Alkenes; C-Coupling; Alkenyl Borates; C-N Bond Cleavage

Abstract: Herein, we developed a new ruthenium(0)-catalyzed Suzuki-coupling of N,N-din thyl-2-(pyridin-2-yl) anilines with alkenyl borates to synthesize 2-phenylolefins via the cleavage of neutral aryl C-N bond. In the abstract e of ligand and additives, by using pyridine as the directing group, the desired 2-phenylolefins were obtained in good to excellent fields with high stereoselectivity (E/Z > 20:1).

Transition-metal catalyzed functionalization of non-activated bonds, such as C-1 C-C, C-F, and C-N bonds has become one of the most powerful protocols in modern organic synthesis.¹ Among the substrate antines are versatile chemical building blocks for many organic molecules in the manufacture of advanced materials, rine maceuticals and agricultural chemicals.² Due to the accepted importance, numerous synthetic approaches have been developed for the aryl C-N bond formation during the past decades, such as Buchwald-Hartwig amination,³ Ullmann cross-coupling reaction,⁴ C-H amination and etc.⁵ In contrast, the functionalization of anilines via cleavage of the aryl C-N bond is rine less reported. Given the abundance and wide availability of anilines, it is important and attractive to develop new motions for the aryl C-N bond. Such process can open possibilities on using amino group as a site for the late-stage functionalization of nolecules. However, the aryl C-N bond usually has high dissociation energy, and chemically inert which lead the direct transtomation challenge.⁶ Conventionally, activation of the aryl C-N bond is conversing the aryl C-N bond into the corresponding diazonium salts,⁷ or ammonium salts,⁸ which contain much higher reactivity (Figure 1, eq a). Remarkably, this challenge has been pertly overcome by the research groups of Chatani, Shi, and Xia (Figure 1, eq b).⁹ Suzuki-coupling, Kumada-coupling, borylation reactions of neutral anilines via the direct aryl C-N bond cleavage have been successfully developed with nicke 2, the catalyst without directing group.

On the other hand, chelation-assisted iner born's cleavage at 2-position of the directing groups has been identified as a powerful strategy for regioselective C-X (X = H, \bigcirc F, N, etc.) bond functionalization.¹⁰ This strategy has also been successfully explored in the functionalization of neutr.¹ a, ⁴ C-N bonds (Figure 1, eq c).¹¹ To date, four examples have been successfully developed on the chelation-assisted in protein of o-NMe₂ substituted pivalophenones.^{11a,11b} By using ketone as the directing group (DG), organic boronic acid 2,2-dimeti 4-1,3 propanediol esters were coupled via aryl carbon-nitrogen bond cleavage in refluxing toluene. Later on, the research groups of Snieckus and Szostak successfully used amides^{11c} and imines^{11d} as the DGs for this Suzuki-type C(aryl)–N bond cleavage reaction. In 2017, Zeng and co-workers also reported a mild chromium-catalyzed Kumada-coupling of neutral anilines using imine as the directing group.^{11e} Herein, we developed a new ruthenium(0)-catalyzed Suzuki-coupling of *N*,*N*-dimethyl-2-(pyridin-2-yl) anilines with alkenyl borates to synthesize 2-phenylolefins via the cleavage of neutral aryl C-N bond by using pyridine as the directing group. The desired 2-phenylolefins can be obtained in good to excellent yields with high stereoselectivity by using Ru₃(CO)₁₂ as the only catalyst.

Journal Pre-proof

a, Conversion of anilines to the highly reactive reagents

b, Direct metal-catalyzed coupling of aryl amines

c, Directing group-assisted SMC of dimethyl anilines

Figure 1. The methods to active aryl C-N bonds. (a) Converse the aryl C-N bon, into the corresponding highly reactive ammonium salts or diazonium salts; (b) Nickel-catalyzed direct coupling of elat. ely reactive neutral amines; (c) DG assisted cross-coupling reaction of neutral anilines.

To begin this study, we chose *N,N*-dimethyl-2-(pyridin-2-yl) and (*E*)-4,4,5,5-tetramethyl-2-styryl-1,3,2dioxaborolaneas (**2a**) as the model substrate to establish the reaction conditions. After extensive experimentation, we found that the (*E*)-2-(2-styrylphenyl) pyridine (**3a**) was obtained in 89% yield with $k_{-3}(CO)_{12}$ (5 mol %) as the catalyst in o-Xylene under Argon at 140 °C without any ligand or additives (Table 1, entry 1 Harp, it is worthy to mention that almost quantitative yield of the desired product could be obtained with 0.5 equivalent of the contract of the rank of the rank

Table 1. Optimization of the Reaction Con. "ition :."

NMe ₂	+ Ph → Bpin → C, 20 h	N Ph
entry	variation from the standard	yield
•	conditions	(%)~
1	-	89
2	[Ru(p-cymene)Cl] ₂ instead of Ru ₃ (CO) ₁₂	n.r.
3	Ru(PPh ₃) ₃ Cl ₂ instead of Ru ₃ (CO) ₁₂	n.r.
4	$RuH_2(CO)(PPh_3)_3$ instead of $Ru_3(CO)_{12}$	59
5	$NiCl_2(PCy_3)_2$ instead of $Ru_3(CO)_{12}$	n.r.
6	$Rh_4(CO)_{12}$ instead of $Ru_3(CO)_{12}$	n.r.
7	$Re_2(CO)_{10}$ instead of $Ru_3(CO)_{12}$	n.r.
8	$Co_2(CO)_8$ instead of $Ru_3(CO)_{12}$	n.r.

	Journal Pre-proof		
9	toluene, anisole, or PhCl instead of <i>o</i> -xylene	73, 69, 86	
10	(E)-styrylboronic acid instead of 2a	51	
11	(E)-5,5-dimethyl-2-styryl-1,3,2- dioxaborinane instead of 2a	88	
12	CsF, or KF(1.5 equiv.) as additive	43,47	
13	2.5 mol% Ru ₃ (CO) ₁₂	71	

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), Ru₃(CO)₁₂ (5 mol %), N₂, *o*-Xylene (2 mL), 140 °C, 20 h. ^{*b*}Determined by GC using hexadecane as the internal standard. n.r. is no reaction.

Scheme 1. The scope of various alkenyl borates in ruthenium-catalyzed coupling cleavage of aryl C-N bond. Reaction conditions: 1a (0.2 mmol), 2 (0.24 mmol), Ru₃(CO)₁₂ (5 mol %), N₂, o-Xylene (2 mL), 140 °C, 20 h, isolated yields.

With the optimized reaction condition in hand, we next investigated the scope of substrates for this catalytic system. Firstly, a range of alkenyl borates were tes ed in this cross-coupling reaction. As shown in Scheme 1, the styrylboronic acid pinacol esters with electron-neutral groups gain the desired styrylbenzene in excellent yields (**3b**, **3c**, and **3h**), except **3d** was achieved in 66% yield. Other synthetically valueble functionalized groups, such as fluoro-(**3i**), chloro-(**3e**), trifluoromethyl-(**3f**), methoxy-(**3g**), were also well tolerated in this catalytic system. Furthermore, heterocyclic alkenyl borates, 2-(thiophen-3-yl) vinyl boronic acid pinacol ester can also gave the desired product in high yield (**3j**). Besides, 2-(triethylsilyl) vinyl boronic acid pinacol ester able to give the corresponding **3k** in good yield as well, and **3k** is a very useful synthetic intermediate for late-stage functionalization of alkylsilyl.¹² Interestingly, when we used allyl boronic acid pinacol ester as the reagent, the corresponding 2-(2-(prop-1-en-1-yl) phenyl) pyridine(**3l**) as the single product was isolated in 65% yield (E/Z = 10:1), no product with terminal alkene was detected. Moreover, phenylboronic acid ester was tested under the optimized conditions as well, only a trace amount of the target biphenyl product was observed.

We then examined various *N*,*N*-dimethylanilines under our standard conditions (Scheme 2). Both alkyl- and halogensubstituted substrates can be applied in this catalytic system and gave the corresponding diaryl alkenes products in good to excellent yields (**3m-3q**). Naphthalene-2-amine is a highly reactive starting material, and the desired product was obtained in excellent yield under the standard conditions (**3**r). Pyrimidine, considered as an analogue group of pyridine, can be applied as directing group here as well and gave the corresponding product with moderate yield (**3s**). However, other directing groups, such as pyrazole (**3t**) and 2-hydroxypyridine (**3u**), can't promote the cleavage of aryl neutral C-N bond under our conditions.

Journal Pre-proof

Scheme 2. The scope of various *N,N*-dimethylanilines in ruthenium-catalyzed coupling cleavage of aryl C-N bond. Reaction conditions: 1a (0.2 mmol), 2 (0.24 mmol), Ru₃(CO)₁₂ (5 mol %), N₂, o-Xylene (2 mL), 140 °C, 20 h, isolated yields.

Based on the above results and previous studies,^{9b,11,13} a plausible seaction pathway is proposed (Scheme 3). Firstly, substrate **1a** coordinate with carbonyl ruthenium to give intermediate $c_{M,P}(c; A)$. Then, intermediate **B** was generated through the activation of C-N bond. After transmetlation, the intermediate $c_{M,P}(c; A)$ achieved. Finally, the desired product **3a** can be eliminated through reductive elimination and the catalytic active ruthenium n con be regenerated for the next catalytic cycle.

In summary, we have developed a ruthenium(0)-catalyzed Suzuki-coupling of N,N-dimethyl-2-(pyridin-2-yl) anilines with alkenyl borates to synthesize 2-phenylolefins via the cleavage of neutral aryl C-N bond using pyridine as directing group. In the absence of ligand and additives, various 2-phenylolefins were obtained in good to excellent yields with high stereoselectivity (E/Z > 20:1).

Conflicts of interest

Scheme 3. Proposed Mechanism.

Acknowledgment

The authors thank the Chinese Scholarship Council for financial support. We thank the analytical department of Leibniz-Institute for Catalysis at the University of Rostock for their excellent analytical service here.

References

- (a) Z.-J. Shi, Homogeneous Catalysis for Unreactive Bond Activation, Wiley, New York, 2014. (b) M. Tobisu, N. Chatani, in Inventing Reactions (Ed.: L. J. Gooßen,), Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 35-53. (c) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369-375. (d) M. Tobisu, N. Chatani, Acc. Chem. Res. 2015, 48, 1717-1726. (e) T. Fujita, K. Fuchibe, J. Ichikawa, Angew. Chem. Int. Ed. 2019, 58, 390-402. (f) K. Ouyang, W. Hao, W.-X. Zhang, Z. Xi, Chem. Rev. 2015, 115, 12045-12090. (g) Q. Wang, Y. Su, L. Li, H. Huang, Chem. Soc. Rev. 2016, 45, 1257-1272.
- 2 A. Ricci, Amino Group Chemistry: From Synthesis to the Life Sciences, John Wiley & Sons, 2008.
- 3 (a) P. Ruiz-Castillo, S. L. Buchwald, *Chem. Rev.* 2016, **116**, 12564-12649. (b) C. Li, Y. Kawamata, H. Nakamura, J. C. Vantourout, Z. Liu, Q. Hou, D. Bao, J. T. Starr, J. Chen, M. Yan, P. S. Baran, *Angew. Chem. Int. Ed.* 2017, **56**, 13088-13093.
- 4 F. Monnier, M. Taillefer, Angew. Chem. Inte. Ed. 2009, 48, 6954-6971.
- 5 (a) M.-L. Louillat, F. W. Patureau, Chem. Soc. Rev. 2014, 43, 901-910. (b) Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247-9301.
- 6 S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255-263.
- 7 (a) A. Roglans, A. Pla-Quintana, M. Moreno-Mañas, *Chem. Rev.* 2006, **106**, 4622-4643. ^(h) F. Mo, G. Dong, Y. Zhang, J. Wang, *Org. Biomol. Chem.* 2013, **11**, 1582-1593
- 8 (a) E. Wenkert, A.-L. Han, C.-J. Jenny, J. Chem. Soc., Chem. Commun. 1988, 975- ¹76. ⁵) S. B. Blakey, D. W. C. MacMillan, J. Am. Chem. Soc. 2003, **125**, 6046-6047. (c) J. T. Reeves, D. R. Fandrick, Z. Tan, J. J. Su. ⁹, H. Lee, N. K. Yee, C. H. Senanayake, Org. Lett. 2010, **12**, 4388-4391. (d) D.-Y. Wang, M. Kawahata, Z.-K. Yang, K. Miyamoto, S. Kc nagawa, K. Yamaguchi, C. Wang, M. Uchiyama, Nat. Commun. 2016, **7**, 12937.
- 9 (a) Z.-C. Cao, S.-J. Xie, H. Fang, Z.-J. Shi, J. Am. Chem. Soc. 2018, 140, 13575 '3579. (b) Z.-C. Cao, X.-L. Li, Q.-Y. Luo, H. Fang, Z.-J. Shi, Org. Lett. 2018, 20, 1995-1998. (c) Z.-B. Zhang, C.-L. Ji, C. Yang, J. Chen. X. Hong, J.-B. Xia, Org. Lett. 2019, 21, 1226-1231. (d) M. Tobisu, K. Nakamura, N. Chatani, J. Am. Chem. Soc. 2014, 136, 5587-559.
- 10 (a) F. Kakiuchi, T. Kochi, S. Murai, Synlett 2014, 25, 2390-2414. (b) '. B. . 'rockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879-5918. (c) P. Nareddy, F. Jordan, M. Szostak, ACS Cate'. 2017, 7, 5721-5745. (d) M. Tobisu, K. Yamakawa, T. Shimasaki, N. Chatani, Chem. Commun. 2011, 47, 2946-2948. (e) H. Kondo, '. / kiba, T. Kochi, F. Kakiuchi, Angew. Chem. Int. Ed. 2015, 54, 9293-9297. (f) Y. Zhao, V. Snieckus, J. Am. Chem. Soc. 2014 136, 11224-11227. (g) Y. Zhao, V. Snieckus, Adv. Syn. Catal. 2014, 356, 1527-1532.
- (a) S. Ueno, N. Chatani, F. Kakiuchi, J. Am. Chem. Soc. 007 129, 6098-6099. (b) H. Kondo, N. Akiba, T. Kochi, F. Kakiuchi, Angew. Chem. Int. Ed. 2015, 54, 9293-9297. (c) Y. Zhao, V. Sniecki, Org. Lett. 2014, 16, 3200-3203. (d) Q. Zhao, J. Zhang, M. Szostak, ACS Catal. 2019, 9, 8171-8177. (e) X. Cong, F. Fan, P. M³. M. Luo, H. Chen, X. Zeng, J. Am. Chem. Soc. 2017, 139, 15182-15190.
- 12 (a) I. Fleming, J. Dunoguès, R. Smithers, Org. React. 1989, **37**, 57–575. (b) D. P. Stamos, A. G. Taylor, Y. Kishi, Tetrahedron Lett. 1996, **37**, 8647-8650. (c) J. Chen, X. Han, X. Lu, Orr. 1914. 2019, **21**, 8153-8157.
- 13 (a) T. Koreeda, T. Kochi, F. Kakiuchi, *J. Am. Cne n. Soc.* 2009, **131**, 7238-7239. (b) T. Koreeda, T. Kochi, F. Kakiuchi, *Organometallics* 2013, **32**, 682-690. (c) J.-X. X¹, ⁻ Z. J., Y. Yuan, X.-F. Wu, *Org. Lett.* **2020**. DOI: 10.1021/acs.orglett.0c00736.

Graphic abstract:

R = Arvl. SiEt₃, Me Ru₃(CO)₁₂ Bpin_ up to 90% yield R ural ar I C-N bond cleavage highly chemoselectivity, no C-H active product lig ind ar d base free highly stereoselectivity, (E)-products

Credit Author Statement

X.W. directed the project. J.X. and F. Z. performed all the experiments. R. F. joined in the discussion. J. X., F. Z. and X. W. prepared and revised the manuscript.

We have no conflict of interest to declaration!

 1. A new ruthenium-catalyzed Suzuki-coupling of N,N-dimethyl-2-(pyridin-2-yl) anilines with alkenyl borates has been developed.

2. The reaction proceeds via the cleavage of neutral aryl C-N bond.

3. Various desired alkenes were obtained in good to excellent yields with high stereoselectivity.

Solution