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ABSTRACT: Sixteen-electron Ni(0) complexes bearing trans-stilbene derivative ligands have been shown to display a high degree
of stability toward oxidation in the solid state. A structural analysis of a unique family of tris Ni(0) stilbene complexes revealed a
remarkable effect of the steric hindrance of the substituents at the para position of the stilbene unit to temperature, oxidation, and
degradation in solution. From these analyses, Ni(4‑tBustb)3 arose as a long-term air-, bench-. and temperature-stable Ni(0) complex.
Importantly, Ni(4‑tBustb)3 presents faster kinetic profiles and a broader scope as a Ni(0) source, thus outperforming the previously
described Ni(4‑CF3stb)3 in a variety of relevant Ni-catalyzed transformations.

The use of nickel (Ni) to catalyze organic transformations
has gained tremendous momentum as a sustainable

alternative to more noble metals.1 Indeed, the breadth of redox
manipulations in Ni complexes opened the door to reactivity
that exponentially expanded the palette of opportunities for
bond formation.1,2 Within this vast realm of transformations,
reactions catalyzed by Ni(0) complexes have played a crucial
role in enabling new catalytic activation modes.3 In this
context, the 18-electron binary complex Ni(COD)2 repre-
sented the most versatile and modular Ni(0) source for
reaction discovery.4 This is primarily due to the high lability of
the olefin ligands toward ligand exchange with a wide variety of
ligandsa reactivity feature which Wilke referred to as “naked
nickel”.5 In spite of these advantages, the sensitivity to air of
Ni(COD)2 requires its handling under an inert atmosphere
using gloveboxes or Schlenk techniques. Moreover, Ni(COD)2
is temperature-sensitive and will eventually decompose if not
stored at low temperatures (<−20 °C). These drawbacks have
partially been circumvented by the use of air-stable Ni(II) and
Ni(0) ligand precursors6,7 and the development of paraffin
capsules for Ni(COD)2,

8 which afford the desired Ni species
under aerobic conditions. Recently, Engle and co-workers have
shown that the Schrauzer complex (COD)Ni(DQ)9 (DQ =
duroquinone) can be used as an air-stable Ni source. Yet,
catalysis is limited to its combination with strongly
nucleophilic ligands, due to the highly coordinating DQ.10

Consequently, the development of a simple, scalable, and

modular Ni(0) source which is bench-, air-, and temperature-
stable but retains the levels of reactivity demonstrated by
Ni(COD)2 is still highly desirable. As part of our ongoing
program on the study of low-valent Ni complexes,11 our group
has recently reported the air-stable, 16-electron binary Ni(0)
olefin complexes Ni(stb)3 (1) and Ni(4‑CF3stb)3 (2) (Figure
1A).12 In contrast to other 16-electron Ni(0) olefin
compounds,5 complex 2 can be stored in air in the freezer
for long periods of time before showing signs of decom-
position. Importantly, complex 2 was shown to be an
alternative to Ni(COD)2 in a variety of Ni-catalyzed
transformations. However, in the absence of nucleophilic
ligands, complex 2 was shown to be unstable in solution at
room temperature, with fast exchange of the 4‑CF3stb ligand
with the solvent, ultimately leading to Ni black.
With the aim of providing a solution to these drawbacks and

to elucidate the origin of the unusual stability of tris-stilbene
Ni(0) derivatives, herein we report a structural analysis of
different 16-electron binary Ni(0) complexes bearing distinct
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stilbene derivatives as ligands. A survey of the substitution
pattern of the aryl groups revealed that steric hindrance play a
fundamental role toward protecting the Ni(0) center from
oxidation. The stability and catalytic activity of these new
complexes were benchmarked with complexes 1 and 2. From
this analysis, Ni(4‑tBustb)3 (6) was identified as an extremely
superior Ni(0) complex, with features that circumvent the
limitations of 2 (Figure 1B). Hence, 6 (1) is stable at room
temperature and can be stored opened to air on the bench for long
periods of time (ca. 1 month), (2) displays higher stability in
solution with various solvents, (3) presents faster kinetic
profiles than 2, (4) is catalytically competent in reactions
where 2 was proven to be either inefficient or inactive, and (5)
can be prepared in multigram quantities with high yields
(95%).
The unexpectedly high stability toward oxidation observed

in our previous work for complex 2 over that of 112 posed the
question as to whether this is the result of steric factors
rendered by the CF3 groups or is a consequence of the electron-
withdrawing effect posed by this group on the stilbene unit. To
shed light on this question, we synthesized various binary 16-
electron complexes, featuring different steric and electronic
substitutions at the meta and para positions of the stilbene.
The procedure previously optimized for the multigram
synthesis for 2 (Ni(acac)2, stilbene, and AlEt3)

12 proved
successful for the preparation of complexes 3−6 (Figure 2,
top). At the onset, we prepared complex 3, bearing fluorine
atoms at both para positions of the phenyl rings, which render
the stilbene unit slightly electron deficient (67% yield). When
the fluorine atoms were replaced by a more electron donating
group such as Me, complex 4 was obtained in good yield
(74%). At this point, we questioned whether the highly
compact arrangement of the stilbenes around the Ni would
permit substitution at the meta position of the aryl ring.
Gratifyingly, the corresponding Ni(0) complex bearing three
(E)-1,2-bis(3,5-dimethylphenyl)ethene ligands (5) could
successfully be synthesized in high yield. Although several

crystallization attempts were unsuccessful, compound 5 was
successfully characterized by NMR spectroscopy and elemental
analysis.13 Yet, when 5 was dissolved in Et2O/MeCN 10/1,
small crystals of 5-MeCN were obtained. This is in line with
previous observations in our group about the facile displace-
ment of one of the stilbene units in nucleophilic coordinating
solvents.12,13 Interestingly, complexes 3−5 have stability
comparable to that of complex 2: they are stable for months
in air if stored in the freezer (−18 °C); however, signs of
decomposition could be observed after several days if they
were left opened to air in the benchtop.13 Despite their
similarities in structure, complexes 2−5 have severe differences
in electronics; yet, a clear trend in their stability toward
oxidation could not be clearly deduced. Then, we speculated
that the steric contribution of these substituents could play a
major role. To validate this hypothesis, we increased the bulk
at the para positions of the stilbene by introducing a tBu group.
Following the general procedure as for 1−5, Ni(4‑tBustb)3 (6)
was obtained as a yellow-orange solid in gram quantities and in
high yield (95%, Figures 1B and 2). To our delight, 6 exhibited
a remarkable stability to temperature and oxidation, and it
could simply be stored in air on the benchtop (1 month). In
contrast to 1−5, complex 6 also displayed high stability in
solution, showing no signs of decomposition in a variety of
solvents. Strikingly, in the solid state, this 16-electron complex
could be heated up to 60 °C for 1 h, showing no visual signs of
decomposition. Finally, X-ray photoelectron spectroscopy
(XPS) unequivocally confirmed that the oxidation state of Ni
in complex 6 is Ni(0).13 Such outstanding physical properties
highlight the robustness of 6 and certify its superior stability in
comparison to the other binary 16-electron Ni(0) olefin
complexes known.14 Figure 2 (bottom) shows the ORTEP
drawings of these family of complexes. Complexes 2−4 and 6
reveal certain common features in the solid state: three stilbene
units are wrapped around the Ni center in a propeller
arrangement, rendering a distorted-trigonal-planar geometry
resembling that of 1, 2 and t,t,t-Ni(CDT).14c

A detailed analysis of the solid-state structures revealed a
priori unexpected features (Figure 3). Although the stilbene
ligands are electronically different among themselves, similar
C1C2 distances of the ethene moiety coordinated to Ni
were observed (1.39 Å)comparing well with the distance in
t,t,t-Ni(CDT) (1.37 Å)14c and coinciding with that of
Ni(COD)2 (1.39 Å) (Figure 3).15 This striking observation
suggests a comparable π back-donation from the d orbitals of
the Ni to the empty π* orbital of the stilbenes in 1−4 and 6.
Moreover, similar geometries for the propeller structure were
observed, with torsion angles (θ = C2−C1−Ni−C3 = 28.3−
30.3°) slightly lower than that of t,t,t-Ni(CDT) (32.0°).14c Yet,
differences could be observed in the torsion between the
ethene moiety and the ipso carbons of the aryl groups (ψ =
C1−C2 = C3−C4). Indeed, these angles range from 158.4 to
161.7° in complexes 1−4; however, complex 6 presents a
much higher torsion (ψ = 156.2°), which is ascribed to the
repulsion between the three tBu units pointing outward at the
edges of the complex. This structural feature suggests that the
tBu groups are experiencing an extreme steric situation and, as
a result, they are offering minimal space available for oxygen to
go through, thus profoundly protecting the Ni center.
Although speculative at this point, the origin of the superior
stability of 6 could be the result of attractive London
dispersion forces (LDF) by the tBu units, which hold the
stilbenes together in the solid state.16

Figure 1. (A) Ni(4‑CF3stb)3: advantages and drawbacks. (B)
Ni(4‑tBustb)3: a superior Ni(0) source for Ni catalysis.
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Having identified complex 6 (Ni(4‑tBustb)3) as a superior
Ni(0) complex in terms of stability, we decided to study its
performance as a catalyst. Although the differences in
electronics on the stilbene units are not reflected in the C
C distance (2 compared to 6), we speculated that in catalysis

such properties could become important and dramatically
influence the catalytic kinetic profiles.17 Hence, we focused our
attention on the venerable Ni-catalyzed Buchwald−Hartwig
amination reaction (Figure 4A), where the presence of π
acceptors has been shown to influence the kinetic profiles due
to competing ligation to the (bis-phosphine)Ni(0) active
species.18 Whereas this transformation proceeds efficiently
with Ni(COD)2 at 100 °C,18a complex 2 (Ni(4‑CF3stb)3)
required 130 °C to proceed to full conversion.12 As shown in
Figure 4A, when complex 2 was used as a catalyst at 100 °C,
extremely slow kinetic profiles were observed (dark blue line),
with almost no conversion of 8 after 7 h. However, complexes
1 and 3−6 bearing more electron rich stilbenes exhibit much
faster performances, with virtually identical profiles. In light of
these results, we attempted a batch reaction using complex 6 at
the reported temperature, and after 19 h reaction time, an
excellent yield of 9 was obtained (Figure 4B, 90%).
The stability in solution and kinetic profile observed for

Ni(4‑tBustb)3 (6) led us to speculate that this complex might
prove superior in other catalytic domains. Specifically, we
focused our attention in reactions where complex 2 struggled

Figure 2. (top) Synthesis of 16-electron Ni(0) stilbene complexes 1−6. (bottom) ORTEP drawings of complexes 2−4, 5-MeCN, and 6 and
analysis of their physical properties. Color code: green, Ni; black, C; yellow, F; purple, N. Hydrogen atoms are omitted for clarity. See the
Supporting Information for complete descriptions of the XRD structures. The stability of the complexes 1−6 to air in the solid state was judged by
a clear visual color change on oxidization; color fading is a good indicator of decomposition. For example, after >1 month, complex 6 showed
noticeable color fading after being exposed to air. Stoichiometric exchange experiments with phosphine revealed a 20% decomposition after this
time.13

Figure 3. Characteristic features of the solid state X-ray for complexes
1−4 and 6. Color code: green; Ni; black, C. Hydrogen atoms are
omitted for clarity.
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to perform or was not stable, due to the absence of supporting
ligands. For example, we examined the alkyl−alkyl cross-
coupling developed by Kambe between alkyl bromides (10)
and alkyl Grignard reagents (11), which requires the use of
dienes as ligands for Ni (Scheme 1A).19 In our previous work,
we showed that complex 2 was completely inactive and
resulted in fast decomposition of 2 in solution.12 However, in a
remarkable example of superior reactivity, Ni(4‑Bustb)3 (6)
performed at the same level as Ni(COD)2, affording a >95%
yield of 12. A similar situation was found in the conversion of
vinyl triflates to vinyl halides developed by Reisman (Scheme
1B).20 In this case, no external supporting ligand was required
and Ni(4‑CF3stb)3 (2) did not show any catalytic activity.
However, when Ni(4‑Bustb)3 was used instead, smooth
formation of vinyl iodide 14 was obtained in 70% yield. The
amide activation protocol developed by Garg is another
example of this different reactivity (Scheme 1C).21 Previously,
our Ni(4−CF3stb)3 (2) required forcing conditions (130 °C
versus 100 °C) to facilitate the formation of 17. The use of
complex 6 surpasses these limitations and delivers 17 in 75%
yield at 100 °C.
The stability and facility of ligand exchange with other

olefins has also been demonstrated in two industrially relevant
transformations which require Ni(COD)2: for example, the Ni-
catalyzed isomerization of 2M3BN (2-methyl-3-butenenitrile,
18) to 3PN (3-pentenenitrile, 19) (Scheme 1D),22 which is
crucial in the efficient synthesis of adiponitrile from
butadiene.23 This transformation proceeds under neat
conditions with the aid of PPh3 and affords comparable levels
of reactivity toward 19 (67%). Another process is the Ni-
catalyzed SHOP (Shell Higher Olefin Process),24 which
enables the oligomerization of ethylene to obtain higher-
molecular-weight α-olefins. Under the reported conditions and

without precatalyst isolation, complex 6 together with the
ligand mixture depicted in Scheme 1E successfully catalyzed
the formation of a mixture of α-olefins with high efficiency.25

These results highlight the potential of 6 in industrially
relevant settings, thus providing an air- and temperature-stable
alternative to current Ni(0) catalysts. Although Ni(4‑tBustb)3
(6) might be regarded as an air-stable Ni(COD)2 surrogate,
the fundamental coordination chemistries of both complexes
differ significantly. For example, when Ni(COD)2 is mixed
with 4.0 equiv of PPh3, a mixture of Ni(PPh3)4 and
(PPh3)2Ni(COD) is commonly obtained (Scheme 1F, top),
with a calculated keq value of 7.5 at 25 °C.13 On the other
hand, when 6 is used instead, clean conversion to the 16-
electron compound 20 is formed (Scheme 1F, bottom). These
differences in coordination chemistry provide an orthogonal
tool to existing strategies for the synthesis of well-defined L−
Ni(0)−olefin complexes.26,17b

Figure 4. (A) Kinetic profiles of the consumption of the aryl chloride
in the Buchwald−Hartwig amination reaction. (B) Batch experiment
at 19 h reaction time.

Scheme 1. Comparison of the Reactivity among Ni(COD)2,
Ni(4‑CF3stb)3 (2), and Ni(4‑tBustb)3 (6)

a

aThe use of complex 6 permits the use of an air- and bench-stable
Ni(0) source in a broader range of Ni(0)-catalyzed transformations.
See the Supporting Information for experimental details.
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Overall, this report presents the synthesis of a family of air-
stable 16-electron tris-olefin Ni(0) complexes. A systematic
study of the substituents enabled us to establish that the origin
of the high stability toward oxidation is the result of a steric
demand imbued by the substituents at the para position of the
stilbene ligands. This fundamental observation permitted the
rational design of Ni(4‑tBustb)3 (6), which proved to be a
superior Ni(0) source with remarkable physical properties.
Complex 6 has been shown to perform at the same level as
Ni(COD)2 in challenging catalytic transformations. The high
resemblance in reactivity to Ni(COD)2, the broad applicability,
high practicality, and robustness of complex 6 lead us to
believe that such a complex will find rapid application in the
field of Ni catalysis. Studies toward studying the origin of such
remarkable stability are currently ongoing in our laboratory.
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