1 - (TRIORGANYLSILYL) -2 - (TRIETHOXYSILYL)ETHANES

Yu. I. Khudobin, V. M. Makarskaya, V. V. Makarskii, N. P. Kharitonov, and M. G. Voronkov

The hydrosilylation reaction has found wide application in organosilicon synthesis [1]. In the present paper we studied the hydrosilylation of $CH_2 = CHSi(OC_2H_5)_3$ (I) with triorganylsilanes in the presence of H_2PtCl_6 . 6H₂O in isopropanol, which proceeds by the following scheme:

 $R^{1}R_{2}^{2}SiH + (I) \rightarrow R^{1}R_{2}^{2}SiCH_{2}CH_{2}Si(OC_{2}H_{5})_{3}$

The optimum conditions were found for the hydrosilylation of (I) with $(C_2H_5)_3SiH$ (III), which assured the maximum yield of 1-(triethylsilyl)-2-(triethoxysilyl)ethane (>90%): the gradual addition of (III) to a mixture of (I) and the catalyst or of (I) to a mixture of (III) and the catalyst. In both cases the optimum concentration of $H_2PtCl_6 \cdot 6H_2O$ is (5.8-11.5) $\cdot 10^{-2}$ mole % of (I). The addition of the catalyst to a mixture of (I) and (III), heated to 80°, causes a vigorous exothermic reaction. Above 110° the yield of the hydrosilylation product drops due to the reduction of the $H_2PtCl_6 \cdot 6H_2O$ to metallic Pt.

The optimum method was used to synthesize 27 new 1-(triorganylsilyl)-2-(triethoxysilyl)ethanes (Table 2). In addition, 1-(trimethylsilyl)-2-(triethoxysilyl)ethane was obtained by a similar method from $CH_2 = CHSi - (CH_3)_3$ and $(C_2H_5O)_3SiH$. The structure of the obtained products was confirmed by the NMR spectra: a singlet

with τ 9.5 ppm (4H), representing the protons of the SiCH₂CH₂Si \neq fragment. Isomers of type SiCHSi \neq are

 CH_3

UDC 542.91:547.1 128

not formed. The stability of the obtained 1-(trialky |si|y|)-2-(triethoxy si|y|) ethanes to hydrolysis increases noticeably with increase in either the length or branching of the alkyl radicals in the $R^1R_2^2Si$ group.

EXPERIMENTAL

The NMR spectra were obtained on a Tesla-487C spectrometer in CCl_4 solution at a frequency of 80 MHz, using cyclohexane as the internal standard. The triorganylsilanes were obtained from the corresponding

TABLE 1. Hydrosilylation of $CH_2 = CHSi(OC_2H_5)_3$ (I) with Triethylsilane (III) [(III): (I) mole ratio = 1.1:1]

-•-•-]		
H ₂ PtCl ₆ . 6H ₂ O, in mole % · 10 ⁻³ of (I)	Reaction condi- tions	Yield of (C ₂ H ₅) ₃ SiCH ₂ CH ₂ Si(OC ₂ H ₅) ₃ . %
0 19,3 57,9 115,8 19,3 57,9 115,8 57,9	A B B C C C D	$\begin{array}{c} 0 \\ 78 \\ 92,1 \\ 92,8 \\ 77,8 \\ 91,7 \\ 92 \\ 60,8 \end{array}$

<u>Remarks</u>. A) A mixture of (I) and (III) was heated from 20 to 110° in 10 min and then refluxed at 110° for 1440 min. B) (I) was added in 20 min to a mixture of the catalyst and (III) heated to 80°, after which the mixture was heated at 200° for 15 min. C) (III) was added in 20 min to a mixture of the catalyst and (I) heated to 80°, after which the mixture was heated at 200° for 15 min. D) The catalyst was added to a mixture of (I) and (III) heated to 80°. The temperature rose to 200° in 2 min.

I. V. Grebenshchikov Institute of Silicate Chemistry, Academy of Sciences of the USSR, Leningrad. Irkutsk Institute of Organic Chemistry, Siberian Branch of the Academy of Sciences of the USSR. S. M. Kirov Leningrad Institute of the Textile and Light Industry. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1622-1625, July, 1976. Original article submitted November 14, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$7.50.

151 IC	Yield.		20	20	-	r uutu		Empirical	. נ	Calculation	
	20	bp. °C (p, mm on Hg)	d4	D ^D u	MR	mol.wt.*	Si, %	formula	MR	mol.wt.	S1, %
, <u></u>			0.8850	1 4450	78 71	963 K	94 30	CHO.Si.	74 73	264 52	24.24
C_2H_5 C_2H_5 C_2H_5	5 92.1	119.5(5.5)	0.8949	1,4100	88.62	306.8	18.26	C11112803013	88,65	306,60	18,32
			0,8851	1,4300	93,57	321,3	17,51	C15H36O3S12	93,32	320,63	17,52
			0,8891	1,4305	93,24	318,4	17,39	ClaHa03Sia	93,32	320,63	11,52
			0,9000	1,4100	94, 89 404 67	540,0 247 4	16,49	CarHanOSia CarHanOSia	402,62 402,62	348,68	16.11
		134.5(5.5)	0.8865	1,4330	102.22	346.6	15.94	C17H40OsSi2	102,62	348,68	16,11
			0,8932	1,4332	101,50	346,8	15,95	C17H40O3Si2	102,62	348,68	16, 11
		138, 5-139(3	0,8914	1,4365	106,51	360,2	15,40	C ₁₈ H ₄₂ O ₃ Si ₂	107, 27	362, 71	15,49
			0,8951	1,4357	105,87	363,9	15,41	Cl3H42O2Si2	107,27	362,71	15,49
			0,8807	1,4355	111,72	372,5	14,96	C19H44O3Si2	111,92	376,74	14,91
			0,8841	1,4402	116,55	388,9	14,40	C20H46O3Si2	116,56	390,76	14,38
			0,8879	1,43/5	115,92	391,6	14,31	C20H46U3515	110,00	390,10 200,76	14,00
			0,0114	1 4000	146,47	200 288 7	14,04	CacHao Siz	116,56	390,76	14,38
-		154-155(4)	0.8792	1,4398	117,10	391.2	14.32	CanHa6OaSia	116,56	390,76	14,38
			1,0230	1.5173	114,98	390,3	14,35	C21H32O3Si3	114,51	388,66	14,45
		172(3,6)	0,8793	1,4390	121,08	405,2	13,82	C21H48O3Si2	121,21	404,79	13,88
			1,0208	1,5133	119,59	401,6	14,03	C22H34O3Si2	119,16	402,69	13,95
		117,	0,8840	1,4412	125,17	414,2	13,31	C22H60OsSi2	125,86	418,82	13,41
		0.7 1	0,8807	1,4430	130,53	432,0	12,98	C23H52U3512	130,01	404,00 729,25	49,00
		001	0,0110	1,4400	130,44	400,0	10,00	Cantauana CarHaOsia	130,61	432,85	12,98
		229(4)		1 5492	100, ±1	451.3	12,36	CasHa0aSie	134.40	450.73	12.46
I ₁₃ n-CeH13	13 88,9	204-205(5)	0,8793	1,4455	143,90	472,8	11,86	C26H58O3Si2	144,45	474,93	11,83
		194 - 195(4, 2)	0,8800	1,4442	144,40	412,2	11,73	C26H58O3512	144,40	414,90	50, II
n-CrHus n-CrH		225-226(6)	0,8773	1,4492	158,11	517,4	10,85	Carts Users	158,40	211,01 247,01	10,01
		(x)+07007	101010	1,4410	100,40	e'no	10,04	210201911620	or foor	104.10	

TABLE 2. Yields, Properties, and Analysis Data of $R^{1}R_{2}^{2}SiCH_{2}CH_{2}Si(OC_{2}H_{5})_{3}$ (II)

1539

organylmagnesium halides by reaction with $HSiCl_3$, $(CH_3)_2SiHCl$, $CH_3Si(H)Cl_2$, and $C_2H_5Si(H)Cl_2$, cf. [2-5]. (CH_3) $_3SiCH = CH_2$, (C_2H_5O) $_3SiCH = CH_2$, and (C_2H_5O) $_3SiH$ were purified by distillation through a column immediately before use in the reaction. The (I) products were synthesized in a dry argon atmosphere. Their properties were determined taking all of the necessary precautions to prevent the entrance of traces of moisture.

1-(Triethylsilyl)-2-(triethoxysilyl)ethane. To a mixture of 9.5 g (0.05 mole) of $(C_2H_5O)_3\text{SiCH}=CH_2$ and 0.1 ml of a 1.5% solution of $H_2PtCl_6 \cdot 6H_2O$ in isopropanol (28.9 $\cdot 10^{-4}$ mole %), heated to 80°, was added 7 g (0.06 mole) of Et₃SiH in 20 min, after which the mixture was heated for another 15 min (here the temperature rose from 80 to 200°). Distillation of the mixture gave 14 g (91.7%) of 1-(triethylsilyl)-2-(triethoxysilyl)ethane with bp 119-120° (5.5 mm). In Table 2 are given the properties and analysis data that were obtained for the product after purification by repeated distillation over Na.

 $\frac{1-(\text{Trimethylsilyl})-2-(\text{triethoxysilyl})\text{ethane.}}{\text{ml of a 1.5\% solution of }H_2\text{PtCl}_6 \cdot 6H_2\text{O in isopropanol (28.9 \cdot 10^{-4} \text{ mole \%}), heated to 50°, was added 9.8 g of (EtO)_3\text{SiH in 20 min, after which the mixture was heated for another 15 min, and here the temperature rose from 50 to 193°. Distillation of the mixture gave 12.5 g (98.6\%) of 1-(trimethylsilyl)-2-(triethoxysilyl)ethane with bp 73.5-74.3° (4 mm) (see Table 2).$

The other 1-(triorgany lsily!)-2-(triethoxysily!)ethanes were obtained in a similar manner (see Table 2).

NMR spectrum (τ , ppm): (CH₃)₃SiCH₂CH₂Si(OC₂H₅)₃; 9.99 s (9H, CH₃); 9.54 s (4H, SiCH₂CH₂Si); 8.79 t (9H, CH₃CO, ³J = 7.5 Hz); 6.23 q (6H, CH₂O). (C₂H₅)₃SiCH₂Si(OC₂H₅)₃; 9.59 s (4H, SiCH₂CH₂Si); 9.55 m (6H, CH₃CH₂); 9.09 m (9H, CH₃CH₂); 8.86 h (9H, CH₃CO, ³J = 7.5 Hz).

CONCLUSIONS

The conditions were found for the hydrosilylation of $CH_2 = CHSi(OC_2H_5)_3$ with triorganylsilanes in the presence of H_2PtCl_6 · $6H_2O$ in isopropanol, which assured a high yield (>90%) of the 1-(triorganylsilyl)-2-(triethoxysilyl)ethanes. These conditions were used to synthesize 27 new 1-(triorganylsilyl)-2-(triethoxysilyl)-ethanes.

The addition of $(C_2H_5O)_3SiH$ to $(CH_2 = CHSi(CH_3)_3$ in the presence of the same catalyst gave 1-(trimethyl-silyl)-2-(triethoxysilyl)ethane in 98.6% yield.

LITERATURE CITED

- 1. É. Ya. Lukevits and M. G. Voronkov, Hydrosilylation, Hydrogermylation, and Hydrostannylation [in Russian], Izd. AN LatvSSR (1964), p. 371.
- 2. B. N. Dolgov, Yu. I. Khudobin, and N. P. Kharitonov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1238 (1959).
- 3. Yu. I. Khudobin, M. G. Voronkov, and N. P. Kharitonov, Izv. Akad. Nauk LatvSSR, Ser. Khim., 595 (1967).
- 4. Yu. I. Khudobin, N. A. Andreeva, and N. P. Kharitonov, Izv. Akad. Nauk SSSR, Ser. Khim., 856 (1974).
- 5. Yu. I. Khudobin, N. A. Andreeva, N. P. Kharitonov, and M. G. Voronkov, Izv. Akad. Nauk SSSR, Ser. Khim., 477 (1975).