DOI: 10.1002/ejoc.200600702

Synthesis and Absolute Configuration of (+)-Pseudodeflectusin: Structural **Revision of Aspergione B**

Fumiyo Saito,^[a] Kouji Kuramochi,^[b] Atsuo Nakazaki,^[a] Yoshiyuki Mizushina,^[c] Fumio Sugawara,^[b,d] and Susumu Kobayashi*^[a,d]

Keywords: Total Synthesis / Natural products / Aromatic compounds / Carbonyl compounds / Stereochemistry

We report herein the total synthesis and determination of the absolute configuration of (+)-pseudodeflectusin. The total synthesis of (+)-pseudodeflectusin starting from o-anisic aid was achieved in 11 total steps with an overall yield of 2.0%. The ¹H- and ¹³C NMR spectroscopic data of our synthetic pseudodeflectusin was identical to that of the natural compound. The absolute configuration of (+)-pseudodeflectusin was determined by chiral HPLC and X-ray crystallographic analyses. We also synthesized the proposed structure of as-

Pseudodeflectusin (1), isolated from the culture broth of Aspergillus pseudodeflectus, exhibits cytotoxicity against several human cancer cell lines derived from the stomach (NUGC-3), cervix (HeLa-S3), and peripheral blood (HL-60). Pseudodeflectusin is an isochroman derivative, which consists of a cyclic hemiacetal and a methylethylidene group at a furanone ring.^[1] Although 1 contains a cyclic hemiacetal, which might exist in a reversible mixture of two isomers, the compound was isolated as a single isomer. However, the absolute configurations of the stereogenic centers at C-7 and C-9 were not determined.

Proksch et al. isolated aspergione B (2) from the fungus Aspergillus versicolor, as a tricyclic chromone derivative with a dihydropyran ring.^[2] Both 1 and 2 (Figure 1) are tricyclic hemiacetals. Compound 1 has a 2-(1-methylethylidene)dihydrofuranone moiety, whereas compound 2 has a 2,3-dimethyl-4-pyrone moiety. The reported NMR spectroscopic data (¹H- and ¹³C NMR spectra) of **2** is in good accordance with that of 1.

- [c] Department of Nutritional Science, Kobe-Gakuin University, Nishi-Ku, Kobe, Hyogo 651-2180, Japan
- [d] Frontier Research Center for Genome and Drug Discovery, Tokyo University of Science,
- 2641Yamazaki, Noda, Chiba, 278-8510, Japan
- Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

pergione B, whose ¹H- and ¹³C NMR spectroscopic data is identical to that of pseudodeflectusin. The ¹H- and ¹³C NMR spectra of our synthetic aspergione B were different from those of the natural compound reported by Proksch et al. Our results confirm that aspergione B and pseudodeflectusin are, in fact, the same compound.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Figure 1. Structure of pseudodeflectusin (1) and aspergione B (2).

To clarify the structure of 1 and to assign the absolute configurations at C-7 and C-9, we started the synthetic studies of pseudodeflectusin.

Ochratoxin A, which has a similar benzoisochroman skeleton to pseudodeflectusin, has been isolated from some strains of Aspergillus ochraceus (Figure 2).^[3–5] The absolute configuration at C-3 of ochratoxin A has been determined to be (R) by comparison of the optical rotation of the degraded product with (R)-(-)-mellein.^[4,6] Therefore, we reasoned that the absolute configuration at C-7 of pseudodeflectusin was also (R).

Figure 2. Mellein and ochratoxin A.

Our synthetic approach for the preparation of (+)pseudodeflectusin is outlined in Scheme 1;^[7] mellein (5) was the key intermediate for its preparation. ortho Lithiation of amide 3 and alkylation of (R)-(+)-propylene oxide led to alcohol 4. Cyclization of 4 and demethylation led to 5.

[[]a] Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki, Noda, Chiba, 278-8510, Japan

Fax: +81-4-7121-3671

<sup>E-mail: kobayash@rs.noda.tus.ac.jp
[b] Department of Applied Biological Science, Faculty of Science</sup> and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan

SHORT COMMUNICATION

Mellein (5) was converted into furanone 6, followed by condensation with acetone to afford 7. Finally, reduction of 7 generated 1.

Scheme 1. Synthetic approach for the preparation of pseudode-flectusin.

The synthesis of (–)-mellein (5) is shown in Scheme 2. The condensation of *o*-anisic acid (8) with *tert*-butylamine and DCC in the presence of DMAP afforded benzamide 3 in 75% yield. Treatment of 3 with two equiv. of *n*BuLi in the presence of TMEDA led to the formation of the orangecolored dianion, which opened (*R*)-(+)-propylene oxide to afford secondary alcohol (–)-4 in 61% yield.^[8,9] Acid-induced (*p*TsOH·H₂O) intramolecular attack of the newly generated alcohol at the amide group of (–)-4 led to δ -lactone (–)-9 in 72% yield.^[9] The methyl group in (–)-9 was cleanly removed by the exposure of (–)-9 to BCl₃ in CH₂Cl₂ to obtain (–)-mellein [(–)-5] in 95% yield.

Scheme 2. Reagents and conditions: a) $tBuNH_2$, DCC, DMAP/ CH₂Cl₂, 75%; b) *nBuLi*, TMEDA, (*R*)-(+)-propylene oxide/THF, – 78 °C, 61% (32% recovery of **3**); c) *p*TsOH·H₂O/toluene, reflux, 72%; d) BCl₃/CH₂Cl₂, –78 °C to 0 °C, 95%.

Treatment of (–)-5 with titanium(IV) chloride and Cl₂CHOCH₃ afforded aldehyde (–)-10 in 88% yield accompanied by the *p*-formyl isomer in 8% yield (Scheme 3).^[10] Aldehyde (–)-10 was converted in 91% yield into proposed methyl ester (–)-11 with the use of sodium cyanide and MnO₂ in MeOH according to Corey's procedure.^[11] Resulting phenol (–)-11 was then converted into ether (–)-12 by means of methyl bromoacetate and potassium carbonate in 98% yield. The cyclization of (–)-12 with sodium methoxide in MeOH gave β-keto ester (–)-13, which was treated with lithium hydroxide in aqueous DMSO at 75 °C to produce furanone (–)-6 in 80% yield.^[12]

Scheme 3. *Reagents and conditions*: a) Cl₂CHOCH₃, TiCl₄/ CH₂Cl₂, -10 °C, 88%; b) NaCN, MnO₂/CH₃OH, 91%; c) K₂CO₃, BrCH₂CO₂CH₃/DMF, 50 °C, 98%; d) NaOCH₃/CH₃OH, reflux, 93%; e) LiOHH₂O/DMSO, H₂O, 75 °C, 80%; f) *p*TsOHH₂O/acetone, reflux, 7; 49%, **14**; 24% (9% recovery of **6**); g) MsCl, DMAP/ pyridine, 72%; h) DIBAL (2.5 equiv.)/THF, -78 °C, 28% (49% recovery of **7**).

For the preparation of the methylethylidene moiety, the reaction of (–)-6 with pTsOH·H₂O in acetone afforded lactone (–)-7 and alcohol 14 in 49% and 24% yield, respectively. Alcohol 14 was converted into (–)-7 by its reaction with MsCl in pyridine in 72% yield.

Finally, the reduction of lactone (–)-7 with DIBAL in THF at -78 °C afforded (+)-pseudodeflectusin (1) in 28% yield, accompanied by recovered (–)-7 in 49% yield.^[13]

The ¹H- and ¹³C NMR spectra of synthetic pseudodeflectusin (1) agreed with those of natural pseudodeflectusin (1) in all respects.^[1] However, the optical rotation of synthetic 1 { $[a]_{D}^{23} = +63.7$ (c = 0.08, MeOH)} was higher than that of natural 1 { $[a]_D^{23} = +11$ (c = 0.18, MeOH)}.^[1] Thus, we prepared (\pm) -pseudofectusin by using (\pm) propylene oxide according to the same procedure, and used synthetic (\pm) -1 as an authentic sample for HPLC analysis. Synthetic (+)-1, (\pm) -1, and natural 1 were subjected to chiral HPLC analysis [Daicel Chiralpak OD, 30 °C, 254 nm, hexane/iPrOH = 15:1, 0.5 mL/min]. The HPLC analysis revealed that the (7*R*)-isomer [(+)-1] ($t_R = 55.8 \text{ min}$) eluted after the (7*S*)isomer [(–)-1] ($t_{\rm R}$ = 36.8 min), which confirmed that natural 1 has the (7R)-configuration. The analysis also indicated that the optical purity of our synthetic (+)-1 was 99% ee. Because the (7S)-enantiomer was not detected in the sample of natural 1, the low value for the optical rotation for natural 1 must be due to the presence of impurities in the sample.

The configuration of the C-9 stereocenter was unambiguously determined by X-ray crystallography.^[14] Figure 3 shows an ORTEP drawing of (+)-1. The *anti* relationship between the methyl group at C-7 and the hydroxy group at C-9 was established, which indicates that (+)-1 has the (9S)-configuration. As a result, we confirmed that the absolute configuration of natural pseudodeflectusin (1) is (7R,9S).

Figure 3. ORTEP drawing of (+)-1.

In order to ascertain the structure of natural aspergione B, we prepared (\pm) -2 from (\pm) -10 (Scheme 4). The addition of ethylmagnesium bromide to aldehyde (\pm) -10 gave a 1:1 diastereomeric mixture of the alcohol, which was oxidized by MnO₂ to afford ketone (\pm) -15 in 2 steps. Treatment of (\pm) -15 with Ac₂O and DBU in pyridine heated at 60 °C produced (\pm) -16 in 53% yield.^[15] The reduction of the lactone moiety in (\pm) -16 with DIBAL in CH₂Cl₂ afforded (\pm) -2, which is the proposed structure of aspergione B.

Scheme 4. *Reagents and conditions*: a) EtMgBr/THF, -5 °C; b) MnO₂/CH₂Cl₂, 52% in 2 steps; c) Ac₂O, DBU, pyridine, 60 °C, 53%; d) DIBAL/CH₂Cl₂, -78 °C, 92%.

The ¹H- and ¹³C NMR spectroscopic data of our synthetic (\pm) -2 were different from those of natural 2 reported by Proksch et al. (Table 1).^[2] In particular, the chemical shifts of 6-H, 7-H, 15-H, and 16-H were different between the two samples (Table 1).^[1,2] In the ¹³C NMR spectroscopic data, chemical shifts of C-2, C-3, C-10, and C-16 for our synthetic (\pm) -2 were quite different from those of natural 2. In the HMBC spectrum of our synthetic (±)-2, HMBC correlations from 15-H to C-2 and C-3, as well as from 16-H to C-2, C-3, and C-4 were observed. Although Proksch et al. reported that the HMBC correlations from 15-H to C-16, and from 16-H to C-15 were observed for natural aspergione B, these correlations were not observed in synthetic (\pm) -2. Taken together, our observations confirmed that the structure of aspergione B is identical to that of pseudodeflectusin.

Table 1. ¹H- and ¹³C NMR spectra of natural aspergione B (2) and synthetic aspergione B $[(\pm)-2]$.

N	atural aspergione B (2)		Synthetic aspergione B ((±)-2)			
Assignr	ment δ _H (<i>J</i> [Hz])	δ_{C}	Assign	ment	δ _H (<i>J</i> [Hz])	δ _C
2		144.5	2			161.3
4		182.5	4			177.7
5		122.7	5			121.0
6	7.61 d (7.8)	122.5	6	8.09	d (8.2)	125.6
7	6.87 d (7.8)	122.0	7	7.10	d (8.2)	124.8
8	. ,	142.0	8			140.3
12	2.76 dd (17.4, 3.8)	36.5	12	2.82	dd (17.0, 3.4)	35.5
	2.70 dd (17.4, 10.4)			2.74	dd (17.0, 11.2)	
13	4.45 ddg (10.4, 3.8, 6.2)	62.2	13	4.51	ddq (11.2, 3.4, 6	6.2) 62.6
11	6.27 d (4.0)	87.5	11	6.37	d (4.0)	88.1
9	()	119.1	9			123.1
10		162.5	10			150.3
14	1.39 d (6.2)	21.0	14	1.41	d (6.2)	21.2
3		131.1	3			117.1
15	2.13 s	20.1	15	2.45	S	18.6
16	2.34 s	17.0	16	2.06	s	10.0
ОH	2.94 d (4.0)		OH	3.04	br. s	

Conclusion

In conclusion, we have achieved the total synthesis of (+)-pseudodeflectusin (1) from *o*-anisic acid in 11 steps with an overall yield of 2.0%. The ¹H- and ¹³C NMR spectroscopic data of our synthetic pseudodeflectusin is identical to that of natural pseudodeflectusin. Chiral HPLC analysis of our synthetic (+)-1, (\pm)-1, and natural 1, together with X-ray crystallographic analysis of synthetic (+)-1, confirmed the absolute configuration of natural 1 to be (7*R*,9*S*). Finally, the proposed structure of aspergione B (2), whose NMR spectroscopic data were reported to be quite similar to those of pseudodeflectusin, was also synthesized. The NMR spectroscopic data of synthetic (\pm)-2 is different from that reported by Proksch et al. for natural 2. Our results confirm that the structure of aspergione B is identical to that of pseudodeflectusin.

Experimental Section

For details see Supporting Information.

Supporting Information (see footnote on the first page of this article): ¹H NMR spectra of natural pseudodeflectusin (1) and synthetic (-)-1, chiral HPLC analysis of synthetic (+)-1, (\pm)-1, and natural 1, and crystal data and measurement conditions of (+)-1. Synthesis of compounds: (-)-4, (-)-5, (-)-6, (-)-7, (-)-9, (-)-10, (-)-11, (-)-12, (-)-13, (+)-1, (\pm)-15, (\pm)-16, and (\pm)-2.

- A. Ogawa, C. Murakami, S. Kamisuki, I. Kuriyama, H. Yoshida, F. Sugawara, Y. Mizushina, *Bioorg. Med. Chem. Lett.* 2004, 14, 3539–3543.
- [2] W. Lin, G. Brauers, R. Ebel, V. Wray, A. Berg, Sudarsono, P. Proksch, J. Nat. Prod. 2003, 66, 57–61.
- [3] K. J. van der Merwe, P. S. Steyn, L. Fourie, D. B. Scott, J. J. Theron, *Nature* 1965, 205, 1112–1113.

- [4] K. J. van der Merwe, P. S. Steyn, L. Fourie, J. Chem. Soc. 1965, 7083–7088.
- [5] P. S. Steyn, C. W. Holzapfel, Tetrahedron 1967, 23, 4449-4461.
- [6] H. Nishikawa, J. Agric. Chem. Soc. Jpn. 1933, 9, 772-774.
- [7] T. Kumemura, T. Choshi, C. Hirata, M. Sera, Y. Takahashi, J. Nobuhiro, S. Hibino, *Heterocycles* 2003, 61, 13–17.
- [8] V. Snieckus, Chem. Rev. 1990, 90, 879–933.
- [9] B.-S. Kwon, J. Tae, *Heterocycles* 2004, 62, 137–141.
- [10] K. van Laak, H.-D. Scharf, Tetrahedron 1989, 45, 5511-5516.
- [11] a) E. J. Corey, N. W. Gilman, B. E. Ganen, J. Am. Chem. Soc. 1968, 90, 5616–5617; b) E. J. Corey, J. A. Katzenellenbogen, N. W. Gilman, S. A. Roman, B. W. Erickson, J. Am. Chem. Soc. 1968, 90, 5618–5620; c) G. Lai, W. K. Anderson, Synth. Commun. 1997, 27, 1281–1287.
- [12] Y. Takeuchi, I. Watanabe, K. Misumi, M. Irea, Y. Hirose, K. Hirata, M. Yamato, T. Harayama, *Chem. Pharm. Bull.* 1997, 45, 2011–2015.
- [13] T. A. Munro, M. A. Rizzacasa, B. L. Roth, B. A. Toth, F. Yan, J. Med. Chem. 2005, 48, 345–348.
- [14] CCDC-614265 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [15] C. Riva, C. De Toma, L. Donadel, C. Boi, R. Pennini, G. Motta, A. Leonardi, Synthesis 1997, 195–201.
 Received: August 11, 2006

Published Online: September 11, 2006