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A B S T R A C T

A series of pyrrolo[1,2-a]pyrazinone compounds (5a–9f) were synthesized, and their cytotoxic activity

against SKOV-3, A549, HeLa cells in vitro were evaluated by the MTT method. Some of the compounds

showed potential antitumor activity against three tumor cell lines. Among them, compounds 9c and 9d
showed the most potent cytotoxic activity. The preliminary mechanism of action was discussed.

� 2013 Hong-Rui Song and Wei Shi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All

rights reserved.
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1. Introduction

Modification of natural product leads is an important approach
to identify promising anticancer agents [1]. Pyrrolo[1,2-a]pyrazi-
none core is exclusively found in the natural products from marine
sponges, mainly from the families Agelasidae, Axinellidae [2].
Longamide B and Palau’amine are two examples (Fig. 1). Long-
amide B methyl ester [3], which was isolated initially in racemic
form from the sponge mentioned above in Japan, exhibits cytotoxic
activity against the same leukemia cell line in vitro [4].
Palau’amine, isolated from the sponge Stylotella aurantium by
Scheuer and co-workers [5], also exhibits cytotoxic properties [6].

Encouraged by the above results, recently we simplified the
structure of these natural product, carried out the synthesis of a
series of novel pyrrolo[1,2-a]pyrazinone compounds. We found
several compounds with potent cytotoxicity, which was worthy of
further investigation.

2. Experimental

As depicted in Scheme 1, the starting material pyrrole 1 was
firstly converted to 2-(trichloroacetyl)pyrrole 2 by treatment with
trichloroacetyl chloride in 62% yield. Then esterification of 2 using
CH3ONa in CH3OH afforded methyl 2-pyrrolecarboxylate 3, which
was converted to 3-methyl-lH-pyrrolo[2,1-c][1,4]oxazin-l-one 4
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by reacting with chloroacetone. The overall yield of these two steps
from 2 to 4 was 56%. Then compound 4 was converted to 5a–5b by
treatment with the corresponding amine, and 5a–5b were
converted to 6a–6d by treatment with the corresponding acyl
chloride in DCM.

Methyl 2-pyrrolecarboxylate 3 was converted to methyl 1-(2-
oxo-2-p-tolylethyl)-1H-pyrrole-2-carboxylate 7 by treatment with
a-bromo-4-methoxyacetophenone in 76% yield, then compound 7
was converted to 8a–8b by treatment with the corresponding
amine, and 8a–8b were converted to 9a–9d by treatment with the
corresponding acyl chloride in DCM. The structures of compounds
5a–9f were characterized [7].

3. Results and discussion

All target compounds were evaluated for cytotoxicity against
three cells in vitro by the MTT method, using 5-Fu as a control.
Analysis of cytotoxicity presented in Table 1 for these compounds
[(Fig._1)TD$FIG]
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Fig. 1. The structure of Longamide B methyl ester and Palau’amine.
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Scheme 1. Reagents and conditions: (a) trichloroacetyl chloride, ether, r.t., (b) CH3ONa, CH3OH, r.t., (c) chloroacetone, acetone, r.t., (d) corresponding amine, CH3CH2OH, r.f.,

(e) corresponding acyl chloride, DCM, 0 8C, (f) a-bromo-4-methoxyacetophenone, K2CO3, DMF, r.t., (g) corresponding amine, CH3CH2OH, r.f., and (h) corresponding acyl

chloride, DCM, 0 8C.
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Fig. 2. Effects of compound 9c on the induction of apoptosis in A549 cells. (A) Karyomorphism altered after treated with compound 9c as revealed by the DNA-binding AT-

specific fluorochrome 40-6-diamidino-2-phenylindole (DAPI) fluorescence staining. (B) Annexin V-FITC was proceeded and the lower right quadrant represents early

apoptosis.

Y. Meng et al. / Chinese Chemical Letters 24 (2013) 619–621620
and their structural features had revealed several patterns of
structure-activity relationship. (1) Compounds 5a, 5b and 6a–6d
exhibited weak or no cytotoxicity compared to 8a, 8b and 9a–9f,
suggesting that the presence of large or hydrophobic groups at C3
enhanced their antitumor activity significantly in all three cancer
cell lines. (2) Compounds with R1 = Cl (6c, 6d, 9c, and 9d) showed
highest cytotoxicity, The chlorine atom was three atoms away
from the nucleus in 6c and 9c and five atoms away from the
Table 1
IC50s (mmol/L) of compounds against three tumor cell lines. The IC50 values of

compounds against SKOV-3, A549, HeLa cells were evaluated by methylthiazolte-

trazolium (MTT) assay. ND: not determined.

Compounds SKOV-3 A549 HeLa

5a >50 >50 >50

5b >50 >50 >50

6a >50 >50 >50

6b >50 >50 >50

6c 43.803 49.239 44.117

6d 39.118 41.109 40.554

8a 22.107 26.551 29.332

8b 27.314 23.477 30.736

9a >50 >50 >50

9b >50 >50 >50

9c 6.908 8.967 5.551

9d 5.438 12.184 10.532

9e 34.157 29.639 35.682

9f 40.126 38.965 43.683

5-Fu ND 86.934 61.438
nucleus in 6d and 9d, while the chlorine atom in Palau’amine was 4
atoms away from the nucleus, Comparing to the structure of
Palau’amine a conclusion could be drawn that a certain length of
chain with a chlorine atom might be essential for the antitumor
activity. Moreover, it could be seen from Fig. 2 that compound 9c
inhibits cell proliferation by inducing apoptosis in A549 cells.

4. Conclusion

In summary, a series of pyrrolo[1,2-a]pyrazinone derivatives
were synthesized and evaluated for their in vitro cytotoxicity
against SKOV-3, A549 and HeLa cells. DAPI staining and Annexin V/
PI experiments showed that compound 9c inhibits cell prolifera-
tion by inducing apoptosis in A549 cells. The study will provide
valuable information for further research on the pyrazinone
antitumor analogs.
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