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Lithium acetylides as alkynylating reagents for the enantioselective

alkynylation of ketones catalyzed by lithium binaphtholatew
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Chiral lithium binaphtholate effectively catalyzed the enantio-

selective alkynylation of ketones using lithium acetylide as an

alkynylating agent. This is the first example of the catalytic

enantioselective addition of lithium acetylide to carbonyl

compounds without the aid of other metal sources.

Optically active propargylic alcohols are useful and versatile

building blocks for the synthesis of a wide range of natural

products and pharmaceuticals. The enantioselective alkynyl-

ation of carbonyl compounds is an important process for the

preparation of chiral propargylic compounds. During this

process, C–C bonds are formed with concomitant creation

of a stereogenic center.1

The first enantioselective alkynylation of carbonyl compounds

was reported by Mukaiyama et al., who employed lithium

acetylide as an alkynylating reagent using 4 equivalents of a

chiral amino alkoxide ligand.2 The catalytic process for the

enantioselective alkynylation was developed by Niwa and

Soai, who employed zinc acetylide as an alkynylating reagent

with an amino alcohol as a catalyst.3 Since then, several

catalytic enantioselective alkynylations were reported using

various metal acetylides, including in situ generation, in the

presence of a variety of metal catalysts.4–7 However, there is a

limited number of successful reports for the alkynylation of

ketones because of their low reactivities.1c,e,f,8 We have previously

reported the enantioselective alkynylation of aldehydes and

ketones with trimethoxysilylalkyne9 using lithium binaphtholate

as a catalyst.10 While investigating the reaction mechanism, we

were surprised to find that a high enantioselectivity was

observed in the reaction of lithium acetylide in the presence

of catalytic amounts of lithium binaphtholate. In the literature,2

excess amounts of the chiral ligand were required for the

asymmetric addition of lithium acetylide to carbonyl com-

pounds in order to achieve high enantioselectivities, because

lithium acetylide is reactive toward the carbonyl compounds

even in the absence of a catalyst. Here we report the first

example of employing lithium acetylide in catalytic enantio-

selective alkynylation without the aid of other metals, using

lithium binaphtholate as a catalyst.

ð1Þ

First we investigated the alkynylation of benzaldehyde (2a)

with lithium phenylacetylide, generated in situ from phenyl-

acetylene (3a) and butyllithium in the presence of lithium

diphenylbinaphtholate, in situ generated from the corresponding

binaphthol (1) and butyllithium (eqn (1)) at 0 1C. No asymmetric

induction was observed in toluene (89% yield, 1% ee),

however, a significant enantioselectivity was observed in

THF (85% yield, 33% ee). As the reaction proceeded in the

absence of a catalyst, our result shows that the catalyst

increased the reactivity of lithium acetylide toward the carbonyl

carbon. In order to reduce the non-catalytic pathway, we

then investigated the reaction of the less reactive substrate,

acetophenone (2b).

Although no enantioselectivity was again observed in

toluene (72% yield, 3% ee), good enantioselectivity was

achieved in THF at 0 1C (67% yield, 76% ee). After screening

the ligands and reaction conditions,11,12 we found that the

corresponding adduct was obtained in high chemical and

optical yields at �78 1C using the catalyst prepared from 1

and BuLi (96% yield, 93% ee, Table 1, entry 1).

With the optimal conditions and catalyst in hand,13 we next

investigated the reaction of acetophenone (2b) with various

acetylenes. Acetylenes 3b or 3c gave high selectivities (entries 2

and 3), but acetylene 3d with a bulky substituent at the

opposite side of the acetylene decreased the selectivity (entry 4).

We then investigated the phenylethynylation of various ketones

using phenylacetylene (3a) as an alkynylating reagent.
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Propiophenone 2c gave a decreased selectivity (entry 5), and

isobutyrophenone 2d gave an almost racemic product (entry 6),

suggesting that the bulkiness of the aliphatic group has an

inferior effect on selectivity. Aliphatic ketones 2e and 2f gave

lower selectivities than acetophenone, but again the difference

of steric bulkiness between the two substituents around ketone

plays an important role in enantiocontrol (entries 7 and 8). An

electron-donating or -deficient substituent on the benzene ring

of acetophenone did not affect the selectivity. Most acetophenone

derivatives gave results similar to that of acetophenone itself

(entries 9–13).

Our protocol could be applied to the asymmetric synthesis

of bioactive compounds. Using the above conditions, the

reaction of 3-acetylpyridine 2l and phenylacetylene 3a gave

the product 4la, which has antifungal activity,15 in high

chemical and optical yields. These yields were the highest of

those reported for the enantioselective alkynylation of

acetylpyridines.

In summary, we have developed an enantioselective

alkynylation of ketones using lithium acetylide in the presence

of chiral lithium binaphtholate as a catalyst. This is the first

example of catalytic enantioselective addition of lithium acetylide

to carbonyl compounds without the aid of other metal sources.

Studies on the mechanism as well as the design of chiral

catalysts to further enhance enantioselectivity are currently

in progress.
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