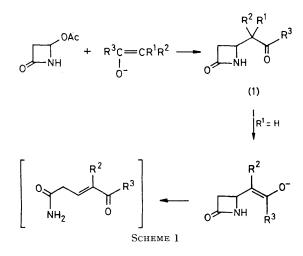
1076

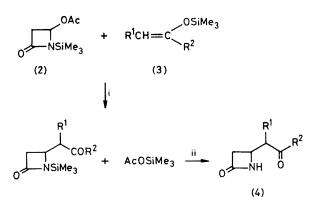

J.C.S. Снем. Сомм., 1981

Concise Syntheses of 4-(Arylcarbonylmethyl)-azetidin-2-ones and **Related Systems**

By ANTHONY G. M. BARRETT* and PETER QUAYLE (Department of Chemistry, Imperial College, London SW7 2AY)

Summary On catalysis by trimethylsilyl trifluoromethanesulphonate, 4-acetoxy-1-trimethylsilylazetidin-2-one reacted with the enol silanes $[R^1CH=C(OSiMe_3)R^2]$ to give THE displacement reactions of 4-acetoxyazetidin-2-one by heteroatomic nucleophiles are legion. In contrast, the replacement of the acetoxy-group by an enolate anion is fraught with difficulty. Generally the yields of the derived ketones, esters, etc. (1) are very $poor^{1,2}$ to modest³ presumably on account of ring fragmentation¹ (Scheme 1).

the β -lactams [CH₂CONHCHCH(R¹)COR²] in excellent yields (71 to 95%).


This fragmentation can be prevented using methyl 2-(diethoxyphosphoryl)phenylthioacetate or diethyl phenylthiomalonate⁴ where $R^1 \neq H$, $R^2 \neq H$, but the derived β -lactams are synthetically unattractive.

The transformation of 4-acetoxyazetidin-2-one directly, in high yield, into the ketones, esters, etc. (1; $R^1 = R^2 = H$) should be highly versatile in the preparation of thienamycin and analogues.^{2,5} Herein we describe a concise method.

TABLE. Preparation of β -lactams (4).^a

R1	R^2	Yield/ %
н	\mathbf{Ph}	89
Me	\mathbf{Ph}	71
Н	$4-MeC_6H_4$	74
Н	$4-ClC_6H_4$	81
Me	OEt	95
Н	SPh	72

4-Acetoxy-1-trimethylsilylazetidin-2-one (2) condensed cleanly with 1-phenyl-1-trimethylsilyloxyethene (3; $R^1 =$ H, $R^2 = Ph$) at -78 to 20 °C in dichloromethane solution on catalysis (0.1 equiv.) by trimethylsilyl trifluoromethanesulphonate. Aqueous potassium fluoride work-up and recrystallisation from dichloromethane and light petroleum gave 4-benzoylmethylazetidin-2-one (4; $R^1 = H$, $R^2 =$ Ph)³ (89%) [m.p. 141-143 °C (lit.³ 141-143 °C), vmax (CH₂Cl₂) 3410, 1755, and 1680 cm⁻¹, δ (CDCl₃) 2.71 (1H,dd, J 15, 3 Hz), 3.04-3.33 (2H,m), 3.49 (1H,dd, J 18, 4 Hz), 4.0-4.27 (1H,m), 6.4 br (1H,s), 7.37-7.71 (3H,m), and 7.92 - 8.06 (2H,m)] (Scheme 2). Further examples are tabulated. Clearly the diverse β -lactams (4) are henceforth readily available.

SCHEME 2. i, CF₃SO₃SiMe₃, ii, KF-H₂O.

We thank the S.R.C. for support and Dr. I. Fleming for helpful discussions.

(Received, 20th July 1981; Com. 866.)

^a All β -lactams were fully characterised by microanalysis and spectral data. β -Lactams (4, $R^1 = Me$) were obtained as mixtures of diastereoisomers.

¹ T. Kametani, T. Honda, J. Sasaki, H. Terasawa, Y. Nakayama, and K. Fukumoto, *Heterocycles*, 1980, 14, 575. ² T. Kametani, T. Honda, A. Nakayama, and K. Fukumoto, *Heterocycles*, 1980, 14, 1967.

- ³ S. Oida, A. Yoshida, and E. Ohki, Chem. Pharm. Bull., 1980, 28, 3494.
 ⁴ C. W. Greengrass and D. W. T. Hoople, Tetrahedron Lett., 1981, 1161.
 ⁵ E.g., see R. W. Ratcliffe, T. N. Salzmann, and B. G. Christensen, Tetrahedron Lett., 1980, 31.