New Method of Synthesis of N-Substituted Carbamates from 4-Hydroxycoumarin

Vincent Spéziale,** Reine Sakellariou, Maâmar Hamdib

^a Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UA CNRS 470, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cédex, France

b Laboratoire des Composés Organiques Hétérocycliques, Institut de Chimie, Université des Sciences et de la Technologie H. Boumediène, BP 32, El-alia, Bab Ezzouar, Alger, Algeria

Received 5 December 1991

The synthesis of a new series of compounds, the N-(methylene-4-oxocoumarinyl)carbamates 3 by condensation of carbamates 2 with 4-hydroxycoumarin (1) in the presence of ethyl orthoformate in good yields is reported.

In the course of our research on pyrone and pyridone derivatives,¹ we recently investigated the condensation reactions of amine derivatives with coumarins as a route to compounds with interesting reactivity and of potential biological activity. The coumarin ring is found in many natural products and is also used as a synthetic intermediate for the preparation of numerous heterocyclic compounds with biological and pharmacological activity.²

Recently, we reported the preparation of 3-ureidomethylenecoumarins by the action of 4-hydroxycoumarin on substituted ureas in good yield.³ Their reactivity is currently under investigation, and encouraging results have been obtained.⁴

We report here the reaction of carbamates 2, some of which are widely used in other applications, with 4-hydroxycoumarin (1) in 2-propanol in the presence of ethyl orthoformate. Refluxing the reaction mixture led to a new series of compounds, the *N*-(methylene-4-oxocoumarinyl)carbamates 3 (Table).

The carbamates used, apart from glycol carbamate which was prepared by action of a solution of ammonia on 1,3-dioxolon-2-one,⁵ were commercially available. All compounds were synthesized in good yield as crystalline products. The presence of a functional group (alcohol) on the hydrocarbon chain of the carbamate did not affect its

2, 3	a	b	c	d	e	f	g
R	Me	Et	Bu	t-Bu	CH ₂ Ph	Ph	CH ₂ CH ₂ OH

reaction with the coumarin and did not reduce the yield. The purities were checked by TLC (eluent: chloroform) and by elemental analyses. Their structures were determined by ¹H NMR and mass spectrometry.

The ¹H NMR spectra of carbamates 3 displayed two doublets between $\delta = 8.5$ and 9.5 and between 10.5 and 13 attributed to the olefinic proton and the NH group, respectively. This is due to the existence of Z- and E-isomers in 3, which we had previously observed with the 3-ureidomethylenecoumarins.³

Mass spectrometry showed, apart from the molecular ion peak, fragments of the coumarin ring⁶ and fragments due to loss of [OR]⁺ and CO.

This method of preparation is noteworthy from the synthetic point of view as it affords access to a new series of substituted carbamates in a simple and quick reaction. Studies are in progress on their chemical reactivity and potential biological activity.

Table. N-(Methylene-4-oxocoumarinyl)carbamates 3 Prepared

Prod- uct	Yield (%)	mp (°C)	Molecular Formula ^a	¹ H NMR ^b δ, J (Hz)	MS (70 eV) m/z (%)
3a	80	193-194	C ₁₂ H ₉ NO ₅ (247.2)	3.90 (s, 3 H), 7.35–7.91 (m, 4 H), 8.66 (2 d, 1 H,	247 (M ⁺ , 100), 217 (7), 188 (84), 121 (64), 120
3b	50	180-181	$C_{13}H_{11}NO_5$ (261.2)	J=12,5), 11.0 and 12.06 (2 d, 1 H, $J=12,5$) 1.38 (t, 3 H), 4.39 (q, 2 H), 7.15-7.54 (m, 4 H), 8.94 (2 d, 1 H, $J=12,5$), 10.95-12.20 (2 d, 1 H, J=12.5)	(36), 93 (16), 92 (64), 65 (17) 261 (M ⁺ , 100), 216 (9), 189 (18), 188 (32), 121 (67), 120 (44), 93 (15), 92 (49), 65 (17)
3с	75	133–134	$C_{15}H_{15}NO_5$ (289.2)	0.95 (t, 3H, $J = 7.5$), 1.49 (m, 4H), 4.33 (t, 2H, $J = 7.5$), 7.15–8.07 (m, 4H), 8.94 (2d, 1H), 10.95 and 12.20 (2d, 1H)	289 (M ⁺ , 59), 261 (24), 216 (17), 189 (42), 188 (27), 121 (68), 120 (35), 93 (17), 92 (46), 65 (18)
3d	60	184–185	$C_{15}H_{15}NO_5$ (289.2)	1.56 (s, 9 H), 7.15 – 8.14 (m, 4H), 8.92 (2 d, 1 H, J = 12,5), 10.81 and 12.06 (2 d, 1 H, J = 12,5)	289 (M ⁺ , 10), 216 (12), 189 (13), 121 (9), 120
3e	75	182-183	$C_{18}H_{13}NO_5$ (323.3)	5.32 (s, 2H), 7.14–8.05 (m, 9H), 8.95 (2d, 1H,	(5), 92 (9), 65 (3), 57 (100) 323 (M ⁺ , 2), 279 (4), 217 (2), 188 (1), 121 (3),
3f	55	199-200	$C_{17}H_{11}NO_5$ (309.2)	J = 12,5), 11.0 and 12.30 (2 d, 1 H, $J = 12,5$) 7.15-8.12 (m, 9 H), 9.02 (2 d, 1 H, $J = 12,5$),	120 (1), 92 (11), 91 (100), 65 (8) 309 (M ⁺ , 3), 216 (79), 121 (46), 120 (16), 94
3g	60	155-156	C ₁₃ H ₁₁ O ₆ (277.2)	11.18 and 12.50 (2 d, 1H, $J = 12.5$) 3.70 (m, 2H), 4.32 (m, 2H), 7.25-7.98 (m, 4H), 8.66 (2 d, 1H, $J = 12.5$), 10.91 and 12.02 (2 d, 1H, $J = 12.5$)	(100), 93 (19), 92 (37), 77 (34), 65 (47) 277 (M ⁺ , 100), 216 (17), 189 (30), 188 (28), 121 (31), 120 (19)

^a Satisfactory microanalyses obtained: $C \pm 0.35$, $H \pm 0.13$, $N \pm 0.39$. ^b Solvents: DMSO- d_6 for 1 and 7, CDCl₃ for 2-6.

922 Short Papers SYNTHESIS

Melting points were determined in an Electrothermal apparatus. ¹H NMR spectra were recorded on a Bruker AC80 instrument, and mass spectra on a Nermag 1010 spectrometer. Elemental analyses were carried out at the Inter-University microanalysis center in Toulouse. The carbamates 2 and 4-hydroxycoumarin (1) were obtained from Aldrich and Janssen Chemical Co.

N-(Methylene-4-oxocoumarinyl)carbamates 3; General Procedure: 4-Hydroxycoumarin (1; 1.62 g, 0.01 mol) and ethyl orthoformate (2.25 g, 0.015 mole) were added to a stirred solution of carbamate 2 (0.01 mol) in 2-propanol (30 mL). The mixture was refluxed for 2 h. The precipitate formed while hot or on cooling to r.t. was washed with 2-propanol, and then recrystallized (CHCl₃/hexane) (Table).

- (1) Chergui, D.; Hamdi, M.; Baboulène, M.; Spéziale, V.; Lattes, A. J. Heterocycl. Chem. 1986, 23, 1721.
 - Rachedi, Y.; Hamdi, M.; Spéziale, V. Synth. Commun. 1989, 19, 3437
 - Kherfi, H.N.; Hamdi, M.; Spéziale, V. J. Heterocycl. Chem. 1990, 27, 1401.
 - Rachedi, Y.; Hamdi, M.; Spéziale, V. Synth. Commun. 1990, 20, 2827

- Rachedi, Y.; Hamdi, M.; Sakellariou, R.; Spéziale, V. Synth. Commun. 1991, 21, 1189.
- (2) Darbarwar, M.; Sundaramurthy, V. Synthesis 1982, 337.
 Feuer, G. Prog. Med. Chem. 1973, 10, 85.
 El-Nagar, A.M.; Ahmed, F.S.M.; Abdel-Salam, A.M.; Radi, M.A.; Latif, M.S.A. J. Heterocycl. Chem. 1981, 18, 1203.
 Moppett, R.B. J. Med. Chem. 1964, 7, 446.
 Garcia-Raso, A.; Garcia-Raso, J.A.; Campaner, B.; Mestres, P. Grider, L.Y. Garcharia 1982, 1027.
 - R.; Sinistera, J. V. Synthesis 1982, 1037. Lauger, P. Von.; Martin, H.; Muller, P. Helv. Chim. Acta 1944, 27, 892.
 - Kitagawal, H.; Iwaki, R.; Yanagi, B.; Sato, T. J. Pharm. Soc. Jpn. 1956, 76, 186.
 - Soine, T.O. J. Pharm. Sci. 1964, 53, 231.
 - Dean, F.M. Naturally Occurring Oxygen Ring Compounds, Butterworths: London, 1963.
- (3) Sakellariou, R.; Spéziale, V.; Hamdi, M. Synth. Commun. 1990, 20, 3443.
- (4) Granier, P.; Sakellariou, R.; Spéziale, V.; Hamdi, M.; unpublished results.
- (5) Adams, P.; Baron, F.A. Chem. Rev. 1965, 65, 567. Viard, M.J. French Patent 1096204 (1955), Société anonyme des Manufactures des Glaces et Produits Chimiques de Saint Gobain, Chauny et Cirey; Chem. Abstr. 1959, 53, 4307.
- (6) Johnstone, R.A.W.; Millard, B.J.; Dean, F.M.; Hill, A.W. J. Chem. Soc. [C], 1966, 1712.