A Practical, Highly Stereoselective Synthesis of the Trisaccharide Repeating Unit of a *Streptococcus pneumoniae* Polysaccharide

Eisuke KAJI,* Frieder W. LICHTENTHALER,* Yumiko OSA, Keiko TAKAHASHI, Eiko MATSUI, and Shonosuke ZEN

School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108

+Institut für Organische Chemie, Technische Hochschule Darmstadt, D-6100 Darmstadt, Germany

A highly stereoselective method has been developed for the synthesis of the trisac-charide component of the capsular polysaccharide of *Streptococcus pneumoniae* type 19F. The key intermediate, 2-benzoyloxyiminoglycosyl bromide was successfully utilized for the construction of the N-acetyl- β -D-mannosamine unit of the trisaccharide.

Streptococcus pneumoniae type 19F is a major pathogenic bacteria for serious pneumonia, $^{(1)}$ in particular, in infants whose immunity is still less sufficient against diseases. The structure of the repeating unit of the capsular polysaccharide of type 19F bacteria has been elucidated $^{(2,3)}$ as N-acetyl- β -D-mannosamine-containing trisaccharide:

$$\rightarrow$$
4)- β -D-ManpNAc-(1 \rightarrow 4)- α -D-Glcp-(1 \rightarrow 2)- α -L-Rhap-(1-PO _{α} - \rightarrow

The trisaccharide component 1 is to be considered an epitop of the antigenic polysaccharide and, hence, an intercellular recognition molecule for the infection. Such biological significance has elicited considerable efforts towards the synthetic acquisition of 1 in quest of artificial antigens, resulting in three different syntheses. $^{4-6}$ Since direct β -glycosylation of N-acetyl-D-mannosamine is not feasible — α -D-manno-

saminides will be formed exclusively —, every approach has employed designed progenitors for the generation of the N-acetyl- β -D-mannosamine unit of 1. Accordingly, 2-azido-2-deoxy-mannopyranosyl halides 2^{5}) and 3^{6}) have been utilized as mannosaminyl donors, or alternately, the elaborately blocked cellobiose derivative 4, generated from its monosaccharide components, in which the equatorial 2'-OH was converted into an axial 2-NHAc via oxidation, oximation, and reduction.⁴) However, neither of these approaches meets practical preparative criteria, inasmuch as they entail more than 16 steps from D-glucose to 1 with overall yields of less than $1\%^{4,5}$) and 1.8%.

We here describe a novel, preparatively useful synthesis of the target trisaccharide 1 using as the key intermediate, the 2-benzoyloxyiminoglycosyl bromide 5, which is readily accessible from glucose in 6-high-yielding steps (overall 59%), $^{7)}$ and whose utility as a suitable glycosyl donor for the convenient successive elaboration of β -D-mannosamine units has amply been demonstrated. Given the availability of L-rhamnose derivative $6^{9)}$ as a suitable glycosyl acceptor for attachment of the rhamnose portion, an appropriately substituted central glucose derivative was required capable of functioning, successively, as a 4-O-acceptor and a glycosyl donor. The p-methoxybenzyl 2,3,6-tri-O-benzyl- β -D-glucoside 7 was selected for this purpose, since, upon glycosylation the anomeric substituent was apt to be removable smoothly by oxidative cleavage with DDQ. The preparation of 7 followed conventional methodology, such that acetobromoglucose was converted into the β -MBn glucoside by reaction with p-methoxybenzyl alcohol, followed by de-O-acetylation, benzylidenation (8 \rightarrow 9), benzylation (\rightarrow 10), and reductive acetal opening to provide 7 in a 32% overall yield over the 5 steps involved.

The highly β -selective glycosidation of bromide 5 with the 4-OH-free glucoside 7 was effected by using Ag₂CO₃/Ag-zeolite as the catalyst in dichloromethane (48 h, 25 °C), affording an approximate 10:1 (1 H-NMR)¹¹⁾ β/α anomeric mixture of disaccharides from which 11¹¹⁾ was isolated in 85% yield. If, however, glycosidation of 5 with 7 was induced by silver triflate, the respective α -linked disaccharide 11) was obtained in a yield of 90%.

Reduction of the β -disaccharide 11 with borane-THF complex (2 h, 25 °C) proceeded with high preference for hydride attack from the α -side (12:1 based on ¹H-NMR) and subsequent *N*-acetylation with acetic anhydride afforded the *N*-acetyl- β -D-mannosaminyl-(1 \rightarrow 4)- β -D-glucoside 12¹⁴) in 69% yield.

In order to convert the disaccharide 12 into a glycosyl donor sufficiently reactive to glycosylate rhamnoside 6, the glycosyl fluoride 15 was generated by way of de-O-methoxybenzylation (DDQ/CH₂Cl₂-H₂O, \rightarrow 13, 43%), 15) chlorination (SOCl₂-DMF/(CH₂Cl)₂, \rightarrow 14, quant.), and fluorination (AgF/MeCN, 77%).

D-glucose
$$\frac{6 \text{ steps}}{59\%}$$
 $\frac{OBz}{BzO}$ $\frac{7}{BzO}$ $\frac{Ag_2CO_3}{Ag^2-zeolite}$ $\frac{11}{BzO}$ $\frac{1}{BzO}$ $\frac{1}{AgF}$ $\frac{1}{BzO}$ $\frac{1}{BzO}$ $\frac{1}{AgF}$ $\frac{1}{BzO}$ $\frac{1}{AgF}$ \frac

Indeed, when the fluoride **15** was exposed to the rhamnosyl acceptor **6**⁹⁾ in the presence of $AgClO_4$ - $SnCl_2$ in dichloromethane, an essentially α -selective glycosylation was effected to afford the desired trisaccharide **16** as a syrup in a 51% yield. The coupling constants for the central glucosyl moiety ($J_{1',2'} = 3.5$, $J_{2',3'} = 9.0$ Hz) unequivocally proved the correct intersaccharidic link-up. Subsequent de-O-benzoylation of **16** with 0.05 M NaOMe/MeOH (\rightarrow **17**, 89%), and hydrogenolysis for removing the benzyl protecting groups (Pd-C/H₂, MeOH, 94%) proceeded smoothly to the target trisaccharide **1**, which was isolated as an amorphous product of $[\alpha]_D^{22} + 28^\circ$ (c 0.5, MeOH). Its 1 H- and 1 3C-NMR data 1 6) were identical in all respects with those reported for the natural 2 0 as well as the synthetic product. 5 ,6)

In summation, a straightforward, highly stereoselective synthesis of the repeating unit of an infectious capsular polysaccharide has been achieved. Our method is not only more efficient — 5% yield over 14 steps from D-glucose — than the previous ones,⁴⁻⁶⁾ but also practical in elaboration of the critical β -D-mannosaminyl portion. The construction of analogs of 1 as well as other, more complex oligosaccharides with a β -D-ManpNAc unit is currently under investigation.

References

- 1) H. J. Jennings, Adv. Carbohydr. Chem. Biochem., 41, 155 (1983).
- 2) N. Ohno, T. Yadomae, and T. Miyazaki, Carbohydr. Res., 80, 297 (1980).
- 3) H. J. Jennings, K. G. Rossel, and D. J. Carlo, Can. J. Chem., 58, 1069 (1980).
- 4) L. Panza, F. Ronchetti, G. Russo, and L. Toma, J. Chem. Soc., Perkin Trans. 1, 1987, 2745.

- 5) T. Sugawara and K. Igarashi, Carbohydr. Res., 172, 195 (1988).
- 6) H. Paulsen, B. Helpap, and J. P. Lorentzen, Carbohydr. Res., 179, 173 (1988).
- 7) F. W. Lichtenthaler, P. Jarglis, and W. Hempe, Liebigs Ann. Chem., 1983, 1959.
- 8) E. Kaji, F. W. Lichtenthaler, T. Nishino, A. Yamane, and S. Zen, Bull. Chem. Soc. Jpn., 61, 1291 (1988).
- 9) A. Liptak, P. Fugedi, and P. Nanasi, Carbohydr. Res., 65, 209 (1978).
- 10) Y. Oikawa, T. Yoshida, and O. Yonemitsu, Tetrahedron Lett., 23, 885 (1982).
- 11) Disaccharide **11** was obtained as a colorless syrup of $[\alpha]_D^{25}$ + 9.8° (c 0.7, CHCl₃), its β -configuration followed from $J_{3',4'}$ and $J_{4',5'}$ couplings of only 5.5 Hz each, indicating distortion of the pyranoid ring towards the twist-boat form as depicted in formula **11**. Similar observations have been made for other β -anomeric 2-benzoyloxyiminoglycosides (Refs. 8, 12, and 13). In contrast, the corresponding α -anomer of **11**, of mp 60-63 °C and $[\alpha]_D^{23}$ + 43.8°(c 0.5, CHCl₃), had the normal $J_{3',4'}$ and $J_{4',5'}$ values of 10 Hz each.
- 12) F. W. Lichtenthaler, E. Kaji, and S. Weprek, J. Org. Chem., 50, 3505 (1985).
- 13) F. W. Lichtenthaler and E. Kaji, Liebigs Ann. Chem., 1985, 1659.
- 14) Relevant physical data for **12**: mp 130–132 °C, $[\alpha]_D^{23}$ 29.7°(c 0.5, CHCl₃); $J_{1',2'} = 1.2$, $J_{2',3'} = 4.0$ Hz.
- 15) Application of another de-O-methoxybenzylating agent, ammonium cerium(IV) nitrate was found to be less effective than DDQ.
- 16) The anomeric composition of trisaccharide **1** at the reducing end was about 2:1 in favor of the *α*-anomer. $^{1}\text{H-NMR} \ (300 \ \text{MHz}, \ D_{2}\text{O}): \ \delta = 1.21 \ (3\text{H}, \ d, \ \alpha \text{H} 6), \ 1.22 \ (3/2\text{H}, \ d, \ \beta \text{H} 6), \ 1.99 \ (3\text{H}, \ s, \ \text{NHAc}), \ 3.92 \ (1/2\text{H}, \ dd, \ \beta \text{H} 2), \ 4.01 \ (1\text{H}, \ td, \ \alpha \text{H} 5'), \ 4.47 \ (1\text{H}, \ dd, \ \text{H} 2"), \ 4.81 \ (1\text{H}, \ d, \ \text{H} 1"), \ 4.86 \ (1/2\text{H}, \ \text{broad s}, \ \beta \text{H} 1), \ 4.92 \ (1\text{H}, \ d, \ \alpha \text{H} 1'), \ 5.00 \ (1/2\text{H}, \ d, \ \beta \text{H} 1'), \ 5.14 \ (1\text{H}, \ d, \ \alpha \text{H} 1); \ J_{1,2} = 1.5 \ (\alpha), \ 1.0 \ (\beta), \ J_{5,6} = 6.3 \ (\alpha), \ 5.5 \ (\beta), \ J_{1',2'} = 3.8 \ (\alpha), \ 3.7 \ (\beta), \ J_{1'',2''} = 1.3, \ J_{2'',3''} = 4.2 \ \text{Hz}. \ ^{13}\text{C-NMR} \ (75 \ \text{MHz}, \ D_{2}\text{O}): \ d = 17.5 \ (\alpha \text{ and } \beta \text{C} 6), \ 22.9 \ (\text{NHCOMe}), \ 54.1 \ (\text{C} 2"), \ 60.6 \ (\alpha \text{ and } \beta \text{C} 6'), \ 61.2 \ (\text{C} 6"), \ 67.5 \ (\text{C} 4"), \ 69.5 \ (\alpha \text{C} 5), \ 70.1 \ (\alpha \text{C} 3), \ 71.1 \ (\alpha \text{C} 5'), \ 71.4 \ (\beta \text{C} 5'), \ 72.0 \ (\alpha \text{C} 2'), \ 72.1 \ (\alpha \text{C} 3'), \ 72.4 \ (\beta \text{C} 4), \ 72.7 \ (\beta \text{C} 2',3'), \ 72.8 \ (\beta \text{C} 3, \ \alpha \text{C} 4), \ 72.9 \ (\text{C} 3"), \ 73.1 \ (\beta \text{C} 5), \ 77.4 \ (\text{C} 5"), \ 78.2 \ (\alpha \text{C} 2), \ 79.3 \ (\beta \text{C} 4'), \ 79.5 \ (\alpha \text{C} 4'), \ 81.8 \ (\beta \text{C} 2), \ 92.4 \ (\alpha \text{C} 1), \ 94.6 \ (\beta \text{C} 1), \ 98.5 \ (\alpha \text{C} 1'), \ 100.2 \ (\text{C} 1"), \ 101.8 \ (\beta \text{C} 1'), \ 176.3 \ (\text{NHCO}).$

(Received December 19, 1991)