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Abstract : The construction of the AB taxane ring system through a (4+2] reaction and Co(I)-[2+2]
cyclization is presented. For the first time, CpCo(CO), catalyzes the ring closure of strained
polyunsaturated triynic compound into eight-membered ring. © 1998 Elsevier Science Ltd. All rights reserved.

In recent years, taxane diterpenoids have been most challenging synthetic targets for the organic chemists

because of their unique structural features as well as their considerable therapeutic potential.1 As a consequence,
an impressive range of synthetic designs have been published towards syntheses of taxol and its analogues,2 with

four of them succeeding in the total synthesis of taxol itself.”

In connection with our synthetic studies on tetracyclic diterpenes and sesquiterpenes based on transition
mc:tal-catalyzr,d4 or radical cyclizations cascades, 3 we have envisioned different approaches to the ABCD taxane
framework by using as key steps in these strategies, [4+2] cycloaddition reactions and cobalt(I)-mediated
cyclotrimcrizations.s

In this communication, we disclose the construction of the AB taxane ring system through this tandem
strategy and report an unexpected cobalt(I)-mediated cyclization from the very strained polyunsaturated
cyclohexenetriyne 3 to an even more sterically congested eight-membered B ring and crowded [6.8.4] fused
tricyclic system 4 (Scheme 1).

Et,0.BF3 CpCo(CO)2 6 G/CVQ
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Scheme 1

The dieneyne 1 was prepared from 2,4-dimethyl-3—(chloromethyl)-1,3-pentadic:nc7 as outlined in Equation

1 (Scheme 2).
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Pd(PPhg)4 fon 1
| + = A Equation
MgBr Et,0O, r. t. N
85% 1

== 1. n-BuLi, THF, -78°C S03.pyridine
Equation 2

== 2. acrolein, -78°C to 25°C == EtaN, DMSO,

CH:Cly, . 1.
60%
Scheme 2

By using a palladium zerovalent catalysis, the coupling reaction of the chlorodiene with the Grignard
reagent derived from propargyl bromide led to 1 in 85 % yield. The dienophile 2 was obtained following
Equation 2 (Scheme 2). The monoalkylation of the 1,5-hexadiyne with acrolein provided the allylic alcohol 5 in
60 % yield, accompanied by the dialkylated compound (10-15 %). Alcohol 5 was subsequently oxidized with the

SO;.pyridine r<=ag<’:nt8 to afford the enediynone 2 in 77 % yield.

The intermolecular Diels-Alder cycloaddition of 1 with 2 proceeded with BF3.Et,0 catalysis at 0°C in
CH,(l, to give cyclohexene 3 in 68 % yield. Exposure of the latter to a stoichiometric amount of CpCo(CO),
(ns-cyc10pemadienyldicarbonyl cobalt) under irradiation either in refluxing benzene or toluene furnished the red

crystalline compound 4 as only one diastereomer in 32 % yield.9 The tricyclo[8.2. ]3‘7.01‘10] tridecane structure

in which the cyclobutadiene is complexed to the cobalt was unambiguously established by a single crystal X-ray
analysis.

Scheme 3

The ORTEP representation (Scheme 3) shows that the cobalt moiety can only be placed on the less crowded
face of the molecule, explaining the observed diastereoselectivity. It is interesting to note that this tricyclic [6.8.4)
compound is photolytically and thermally quite inert and stable under oxidative conditions as well.
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Although the obtention of cobaltacyclobutadienes has been observed in the case of the cyclization of diynic
compoundsm or when the third unsaturation could not be incorporated on the metallacyclopentadienc:,11 the

formation of compound 4 remains surprising. Two pathways can be invoked to explain the formation of such a
product (Scheme 4). The first one would involve a cobalt(I)-mediated [2+2] cycloaddition, which would furnish
directly the complexed cyclobutadiene. In the second one, after coordination of the two triple bonds with the
cobalt complex, the oxidative addition leads to the cobaltacyclopentadiene 6. This presumed intermediate
metallacycle would then prefer valence tautomerization to 4 rather than incorporation of the appended alkyne unit,
probably for electronic reasons due to the presence of the carbonyl group conjugated with the
cobaltacyclopentadieny! moiety.

CpCo(CO),

[2+2) 6

CpCo(CO)z
0\
benzene, hv, A 63 / / [4"+2]

Scheme 4

In order to determine the factors governing these tautomerization versus incorporation processes, we have
investigated the cobalt(I)-mediated cyclizations of cyclohexenetriynes in which the carbonyl group is replaced by
different functionnalities. These results illustrating the dramatic influence of the substitution in that position will
be presented in a forthcoming paper.

In summary, these preliminary results show for the first time that cobalt(I) species mediate the ring closure
of strained polyunsaturated compounds into an eight-membered ring. More importantly, the sequence : [4+2]
reaction and Co(I)-cyclization allows the construction of the AB taxane ring system.
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