SYNTHESIS OF METHYL 2-O-, 3-O-, AND 5-O-β-D-RIBOFURANOSYL-β-D-RIBOFURANOSIDE via 1,2-O-CYANOETHYLIDENE DERIVATIVES OF D-RIBOFURANOSE

JOSEF GASS, RUDOLF CHRISTIAN, PAUL KOSMA*, Institut für Chemie der Universität für Bodenkultur, A-1180 Vienna (Austria)

GERHARD SCHULZ, AND FRANK M. UNGER Sandoz-Forschungsinstitut Wien, A-1235 Vienna (Austria) (Received May 5th, 1987; accepted for publication, August 31st, 1987)

ABSTRACT

Triphenylmethylium perchlorate-catalyzed glycosylation of 2-, 3- and 5-trityl ethers of methyl β -D-ribofuranoside by 1,2-O-cyanoethylidene derivatives of D-ribofuranose gave good yields of the corresponding 1,2-*trans*-linked disaccharide derivatives. The structural assignments of the deprotected disaccharides were confirmed by ¹H-n.m.r. and ¹³C-n.m.r. spectroscopy.

INTRODUCTION

As an approach towards the chemical synthesis of oligo- and poly-saccharides, the reaction of 1,2-O-(1-cyanoethylidene) derivatives of hexopyranoses and various furanoses with trityl ethers in the presence of catalytic amounts of triphenyl-methylium ions, leading to the stereoselective formation of 1,2-*trans*-glycosidic bonds, has been extensively used¹⁻⁶. In a study of the preparation of 1,3- and 1,5- β -D-ribofuranans, we have synthesized methyl 2-O-, 3-O-, and 5-O- β -D-ribofuranosyl- β -D-ribofuranoside, as model compounds, by use of 1,2-O-(1-cyanoethylidene) derivatives of D-ribofuranose.

RESULTS AND DISCUSSION

Reaction of known^{7,8} 1,2,3-tri-O-acetyl-5-O-benzoyl- β -D-ribofuranose (1) with cyanotrimethylsilane in the presence of stannous chloride^{9,10} gave a 96% yield of a 2:1 mixture of the 1,2-O-(*exo-* and *endo-*1-cyanoethylidene) derivatives 2 and 3, which were separated by column chromatography on silica gel. The configuration of C-2 in the dioxolane ring was based on the different chemical shifts of the CH₃ groups in the ¹H-n.m.r. spectra. In agreement with reported ¹H-n.m.r. data of 1,2-

0008-6215/88/\$ 03.50 © 1988 Elsevier Science Publishers B.V.

^{*}To whom correspondence should be addressed.

O-cyanoethylidene derivatives of furanoses¹¹, the signal attributable to the *endo*-CH₃-group of **2** was observed at δ 1.90, whereas the corresponding signal of the *exo*-group was shifted upfield to δ 1.81.

The trityl ether **5** was prepared from previously described¹² methyl 5-O-trityl- β -D-ribofuranoside (**4**) by reaction with acetic anhydride-pyridine in 98% yield. Tritylation of known¹³ methyl 5-O-benzoyl- β -D-ribofuranoside (**6**) with triphenylmethylium perchlorate-2,4,6-trimethylpyridine² in dichloromethane afforded the 2-trityl ether **7** (36% yield) and 3-trityl ether **8** (25% yield), which were separated

by column chromatography on silica gel. The structures of the isomers were established on the basis of their ¹H-n.m.r. spectra. After deuterium exchange, the signal attributable to H-3 in compound 7 was observed as a doublet of doublets at $\delta 3.61$, whereas the signal of H-2 in compound 8 appeared as a doublet at $\delta 2.83$. Acetylation of the isomers gave the corresponding 3-O-acetyl (9) and 2-O-acetyl (10) derivatives, respectively.

The disaccharide syntheses were performed essentially under the conditions described by Kochetkov *et al.*³. Thus, reaction of **5** with the *exo*-cyanoethylidene derivative **2** in the presence of a catalytic amount of triphenylmethylium perchlorate in dichloromethane gave the β -D-(1 \rightarrow 5)-linked disaccharide derivative **11** in 64% yield.

Similarly, the β -D-(1 \rightarrow 2)- and β -D-(1 \rightarrow 3)-linked disaccharide derivatives 13 and 15 were obtained by reaction of 10 and 9 with the *endo*-cyanoethylidene derivative 3 in 65 and 71% yield, respectively. The β -D-anomeric configuration of the ribofuranosyl residues was assigned on the basis of the low values of the vicinal coupling constants $(J_{1,2} < 1.5 \text{ Hz})^{14}$. By-products isolated from the reaction mixtures resulted from hydrolysis of 2 or 3; no α -D-linked disaccharide derivatives, however, could be detected. Deacylation of 11, 13, and 15 with methanolic sodium methoxide afforded methyl 5-O- β -D-ribofuranosyl- β -D-ribofuranoside (12) (95%), crystalline methyl 3-O- β -D-ribofuranosyl- β -D-ribofuranoside (16) (93%), and methyl 2-O- β -D-ribofuranoside¹⁵ (14) (87%).

The ¹³C-n.m.r. spectrum of **14** was identical with that previously reported¹⁶. The ¹³C-n.m.r.-spectra of **12** and **16** (Table I) are in agreement with the assigned structures. The observed glycosidation shifts are comparable to those observed for the O-alkylidation at O-2, -3, or -5 of methyl β -D-ribofuranoside¹⁷. In compound

TABLE I

¹³C-CHEMICAL SHIFTS⁴ (δ) OF DISACCHARIDES 12, 14, 16, AND METHYL β -D-RIBOFURANOSIDE

Carbon atom	Compound					
	12	14	16	β-D-RibfOMe		
1'	108.25	108.64	108.82			
2'	75.23	75.40	75,58			
3'	71.77	71.66	70.29			
4'	83.78	83.89	83.63			
5'	63.79	63.76	61.57			
1	108.99	107.67	108.73	108.72		
2	74.94	81.31	74.63	74.97		
3	72.01	71.10	79.78	71.57		
4	82.16	84.12	81.83	83.62		
5	70.28	63.44	63.52	63.55		
MeO	56.08	56.30	55.80	55.92		

^eDownfield from the signal of Me₄Si (set at δ 67.40 upfield from the signal of 1,4-dioxane in D₂O at 298 K).

H atom	Compound				
	12	14	16	β-D-RibfOMe	
1' (1',2')	5.07 (s)	5.19(1.0)	5.11 (0.8)	4	
2' (2'.3')	4.12 (4.5)	4.18 (4.5)	4.15 (4.5)		
3' (3',4')	4.18(7.0)	4.26 (7.0)	4.35 (7.5)		
4'(4',5a')	4.03 (3.5)	4.05 (3.2)	4.07 (2.8)		
(4',5b')	(6.5)	(6.5)	(4.0)		
5a' (5a'.5b')	3.84(-12.5)	3.86(-12.0)	3.87(-12.8)		
5b'	3.65	3.67	3.73		
1(1.2)	4.93 (1.0)	5.11(1.3)	4.92 (s)	4.89 (1.0)	
2(2.3)	4.05 (4.5)	4.09 (5.0)	4.17 (4.0)	4.03 (4.5)	
3 (3.4)	4.23 (7.0)	4.27 (7.0)	4.13 (7.2)	4.15 (7.0)	
4 (4.5a)	4.13 (2.5)	4.00 (3.5)	4.08 (3.0)	4.00 (3.2)	
(4,5b)	(7.0)	(6.5)	(6.0)	(6.3)	
5a (5a.5b)	3.98(-11.0)	3.81(-12.5)	3.81(-12.2)	3.79 (~12.2)	
5b	3.56	3.62	3.62	3.60	
MeO	3.41	3.42	3.40	3.39	

TABLE II

¹H-N.M.R. DATA^{*a*} OF DISACCHARIDES **12**, **14**, **16**, AND METHYL β -D-RIBOFURANOSIDE

^{a1}H-N.m.r. chemical shifts are downfield from the signal of sodium 4,4-dimethyl-4-silapentanoate in D_2O at 298 K; couplings are in Hz (in parentheses) and are of the first order.

16, the signals of both C-3' and C-5' were shifted upfield. A similar effect was observed when D-ribose is linked to a *manno*-system¹⁶ [methyl β -D-Ribf-(1 \rightarrow 7)-KDOpOMe]. Since the three-bond H-H couplings of the ring protons are similar to those measured in 12 or 14, these differences did not indicate a change of the ring conformation, and were indicative only of a different CH₂OH side-chain rotamer population, also visible from the H-4'-H-5a' and H-4'-H-5b' proton-proton coupling constants¹⁸ (Table II).

The assignments of the ¹H-n.m.r. spectra were facilitated by selective-proton decoupling. In compound **12**, the signal cluster belonging to both ribosyl residues were assigned by comparison with the spectrum of methyl β -D-ribofuranoside. In compound **16**, on saturating the H-1' signal (δ 5.11), a total n.O.e. of 40% was observed at δ 4.15 (H-2', the connected hydrogen atom) and at δ 4.13 (H-3, the interglycosidic neighbor hydrogen atom), thus confirming the assignment. In compound **14**, on saturation of the H-1 signal (δ 5.11), an n.O.e. of 5% was observed at δ 4.09 (H-2, the connected hydrogen atom) and one of 3% at δ 3.42 (the methyl signal), again confirming the assignment.

EXPERIMENTAL

General methods. — Melting points were determined with a Kofler hot-stage and are uncorrected. Optical rotations were measured with a Perkin-Elmer 141 polarimeter. ¹H-N.m.r. spectra were recorded with a Bruker WM-250 instrument at 298 K using tetramethylsilane as the internal standard for solutions in (²H)chloroform. Coupling constants are of first order. ¹H-N.O.e. difference-spectra were measured for solutions in deuterium oxide. Proton-decoupled ¹³C-n.m.r. spectra were recorded at 62.9 MHz for solutions in deuterium oxide at 298 K using 32 K of memory and a spectral width of 12 kHz. Chemical shifts (δ) are given from the signal of tetramethylsilane whose resonance frequency was set at δ 67.40 upfield from an external signal of 1,4-dioxane in deuterium oxide. T.l.c. was performed on Merck precoated plates (5 \times 10 cm, layer-thickness 0.25 mm, Silica Gel 60 F₂₅₄). Spots were detected by u.v. light and by spraying with an anisaldehyde- H_2SO_4 reagent¹⁹. Column chromatography was performed on Merck-Lichroprep columns (size A, 24 \times 1; B, 31 \times 2.5; and C, 44 \times 3.7 cm; silica gel 40-63 μ m) under pressure (0.2 MPa). Acetonitrile was distilled twice from P_2O_5 , dichloromethane was distilled twice from CaH₂, and nitromethane was dried over molecular sieves 3A and distilled twice from CaH₂ prior to use. Triphenylmethylium perchlorate was synthesized as described and further purified³ when used as a catalyst for glycosylation. Solutions were concentrated in vacuo at 40°. Elemental analyses were performed by Dr. J. Zak, Mikroanalytisches Laboratorium am Institut für Physikalische Chemie, Universität Wien.

3-O-Acetyl-5-O-benzoyl-1,2-O-[(1-exo- and 1-exo-cyano)ethylidene]- α -Dribofuranose (2 and 3). — Cyanotrimethylsilane (3.1 mL, 25 mmol) was added to a suspension of 1,2,3-tri-O-acetyl-5-O-benzoyl- β -D-ribofuranose (1) (3.17 g, 8.3 mmol) and anhydrous SnCl₂ (1.5 g) in dry acetonitrile (10 mL) under N₂ at room temperature. The mixture was stirred for 40 min, diluted with dichloromethane (50 mL), and extracted with saturated aqueous NaHCO₃. The organic layer was dried (MgSO₄) and evaporated. The residue was purified on a column of silica gel (*C*, 10:1 toluene-ethyl acetate). Pooling and evaporation of the fractions containing the faster-moving component gave 2 (1.76 g, 61%), colorless needles, m.p. 74–75° (ethyl acetate-hexane), $[\alpha]_D^{20}$ +88° (*c* 1.0, chloroform); ¹H-n.m.r.: δ 8.08–8.03 (m, 2 H) and 7.64–7.43 (m, 3 H, arom. H), 6.06 (d, 1 H, J_{1,2} ~4.0 Hz, H-1), 5.06 (dd, 1 H, J_{2,3} ~5.0 Hz, H-2), 4.84 (dd, 1 H, J_{3,4} ~9.0 Hz, H-3), 4.67 (dd, 1 H, J_{5a,5b} ~12.5, J_{5a,4} ~3.0 Hz, H-5a), 4.41 (dd, 1 H, J_{5b,4} ~4.5, H-5b), 3.97 (ddd, 1 H, H-4), 2.12 (s, 3 H, CH₃CO), and 1.90 (s, 3 H, endo-CH₃).

Anal. Calc. for C₁₇H₁₇NO₇: C, 58.79; H, 4.93; N, 4.03. Found: C, 59.07; H, 4.92; N, 4.02.

Further elution of the column gave **3** (yield 956 mg, 33%), colorless syrup, $[\alpha]_D^{20} + 164^\circ$ (c 1.4, chloroform); ¹H-n.m.r.: δ 8.07–8.02 (m, 2 H) and 7.63–7.43 (m, 3 H arom.), 6.03 (d, 1 H, $J_{1,2} \sim 4.0$ Hz, H-1), 5.05 (dd, 1 H, $J_{2,3} \sim 5.5$ Hz, H-2), 4.89 (dd, 1 H, $J_{3,4} \sim 8.5$ Hz, H-3), 4.82 (ddd, 1 H, $J_{5a,4} \sim 3.0$, $J_{5b,4} \sim 4.0$ Hz, H-4), 4.66 (dd, 1 H, $J_{5a,5b} \sim 12.5$ Hz, H-5a), 4.44 (dd, 1 H, H-5b), 2.19 (s, 3 H, CH₃CO), and 1.81 (s, 3 H, *exo*-CH₃).

Anal. Calc. for C₁₇H₁₇NO₇: C, 58.79; H, 4.93; N, 4.03. Found: C, 58.82; H, 4.85; N, 4.01.

Methyl 2,3-di-O-*acetyl-5*-O-*trityl-* β -D-*ribofuranoside* (**5**). — A solution of acetic anhydride (1 mL) in pyridine (3 mL) was added to a solution of **4** (716 mg) in pyridine (5 mL) at 0°. After being stirred for 16 h, the mixture was taken to dryness. The residue was dissolved in dichloromethane (50 mL), extracted with saturated aqueous NaHCO₃, dried (MgSO₄), and evaporated. Purification of the residue on a column of silica gel (*B*, 4:1 toluene–ethyl acetate) afforded **5**, 850 mg (98%), colorless syrup, $[\alpha]_D^{20}$ -6.5° (*c* 0.26, chloroform); ¹H-n.m.r.: δ 7.59–7.21 (m, 15 H, arom.), 5.42 (dd, 1 H, $J_{3,4} \sim 8.0$, $J_{3,2} \sim 5.0$ Hz, H-3), 5.28 (dd, 1 H, $J_{1,2} \sim 1.5$ Hz, H-2), 4.95 (d, 1 H, H-1), 4.29 (ddd, 1 H, $J_{4,5a} \sim 4.5$, $J_{4,5b} \sim 6.0$ Hz, H-4), 3.38 (s, 3 H, OCH₃), 3.38–3.23 (m, 2 H, H-5a,5b), 2.12 and 2.02 (s, 6 H, 2 CH₃CO).

Anal. Calc. for C₂₉H₃₀O₇: C, 71.00; H, 6.16. Found: C, 70.67; H, 6.37.

Methyl 5-O-benzoyl-2-O-trityl- β -D-ribofuranoside (7) and methyl 5-O-benzoyl-3-O-trityl- β -D-ribofuranoside (8). — Triphenylmethylium perchlorate (2 g) was added in portions to a solution of **6** (835 mg, 3.1 mmol) and 2,4,6-trimethylpyridine (0.83 mL) in dry dichloromethane (10 mL). After being stirred for 4 h at room temperature, the mixture was diluted with dichloromethane (50 mL), washed with saturated aqueous NaHCO₃, dried (MgSO₄), and evaporated. Purification of the residue on a column of silica gel (60 × 2.5 cm; 5:1 toluene-ethyl acetate) afforded **7** as the faster moving component, yield 570 mg (36%), colorless syrup, $[\alpha]_{D}^{20} + 17^{\circ}$ (c 1.0, chloroform); ¹H-n.m.r.: δ 8.03–7.98 (m, 2 H, arom.), 7.57–7.43 (m, 3 H, arom.) 7.40–7.15 (m, 15 H, arom.), 4.42–4.22 (m, 3 H, H-4,5a,5b), 4.21 (dd, 1 H, J_{2,3} ~5.0, J_{2,1} ~2.0 Hz, H-2), 4.09 (d, 1 H, H-1), 3.61 (ddd, 1 H, J_{3,OH} ~7.5, J_{3,4} ~2.5 Hz, H-3), 3.12 (s, 3 H, CH₃O), and 2.61 (d, 1 H, OH).

Anal. Calc. for C₃₂H₃₀O₆: C, 75.27; H, 5.92; Found: C, 74.70; H, 6.07.

Further elution of the column afforded **8**, yield 394 mg (25%), colorless syrup, $[\alpha]_{D}^{20}$ -79° (*c* 1.2, chloroform); ¹H-n.m.r.: δ 8.05–7.98 (m, 2 H, arom.), 7.60–7.15 (m, 18 H, arom.), 4.71 (s, 1 H, H-1), 4.53 (ddd, 1 H, $J_{3,4} \sim 6.0, J_{4,5} \sim 5.8, J_{4,5a} \sim 2.5$ Hz, H-4), 4.47 (dd, 1 H, $J_{5a,5b} \sim 12.5$ Hz, H-5a), 4.39 (dd, 1 H, $J_{2,3} \sim 5.0$ Hz, H-3), 3.96 (dd, 1 H, H-5b), 3.17 (s, 3 H, CH₃O), 2.83 (dd, 1 H, $J_{2,OH} \sim 2.5$ Hz, H-2), and 2.47 (d, 1 H, OH).

Anal. Calc. for C₃₂H₃₀O₆: C, 75.27; H, 5.92. Found: C, 74.96; H, 6.01.

Methyl 3-O-*acetyl*-5-O-*benzoyl*-2-O-*trityl*-β-D-*ribofuranoside* (9). — A solution of 7 (570 mg), 4-dimethylaminopyridine (5 mg), and acetic anhydride (0.6 mL) in dry pyridine (5 mL) was stirred for 2 h at room temperature. The mixture was processed as described for **10** to give **9** (591 mg, 96%), colorless syrup, $[\alpha]_{D}^{20}$ +36° (*c* 2.7, chloroform); ¹H-n.m.r.: δ 8.07–8.02 (m, 2 H, arom.), 7.85–7.23 (m, 18 H, arom.), 4.97 (dd, 1 H, $J_{3,4} \sim 6.0$, $J_{2,3} \sim 5.0$ Hz, H-3), 4.57 (ddd, 1 H, $J_{4,5} \sim 4.5$ Hz, H-4), 4.51 (dd, 1 H, $J_{5a,5b} \sim 11.5$, $J_{5a,4} \sim 4.0$ Hz, H-5a), 4.32 (dd, 1 H, H-5b), 4.23 (dd, 1 H, $J_{1,2} \sim 1.5$ Hz, H-2), 3.85 (d, 1 H, H-1), 3.03 (s, 3 H, CH₃O), and 2.08 (s, 3 H, CH₃CO).

Anal. Calc. for $C_{34}H_{32}O_7$: C, 73.90; H, 5.84. Found: C, 73.47; H, 6.05. Methyl 2-O-acetyl-5-O-benzoyl-3-O-trityl- β -D-ribofuranoside (10). — A solution of **8** (352 mg) in dry pyridine (5 mL) was treated with acetic anhydride (0.35 mL) for 2.5 h. The mixture was evaporated to dryness. The residue was dissolved in dichloromethane (40 mL), washed with saturated aqueous NaHCO₃, dried (MgSO₄), and evaporated. Purification of the residue on a column of silica gel (*B*, 2:1 toluene–ethyl acetate) afforded **10** (368 mg, 97%), colorless syrup, $[\alpha]_D^{20} - 49^\circ$ (*c* 1.0, chloroform); ¹H-n.m.r.: δ 7.99–7.95 (m, 2 H, arom.), 7.60–7.15 (m, 18 H, arom.), 4.67 (s, 1 H, H-1), 4.56–4.48 (m, 2 H, H-2,4), 4.39 (dd, 1 H, $J_{4,5a} \sim 1.5$, $J_{5a,5b} \sim -12.0$ Hz, H-5a), 4.02 (dd, 1 H, $J_{3,4} \sim 1.5$, $J_{3,2} \sim 3.5$ Hz, H-3), 3.87 (dd, 1 H, $J_{5b,4} \sim 4.5$ Hz, H-5b), 3.14 (s, 3 H, CH₃O), and 2.18 (s, 3 H, CH₃CO).

Anal. Calc. for C₃₄H₃₂O₇: C, 73.90; H, 5.84. Found: C, 73.64; H, 6.15.

Methyl 2,3-di-O-acetyl-5-O-(2,3-di-O-acetyl-5-O-benzoyl-B-D-ribofuranosyl)- β -D-ribofuranoside (11). — In one limb of a tuning-fork-shaped tube, a solution of 5 (320 mg, 0.58 mmol) and 2 (243 mg, 0.7 mmol) in dichloromethane (2 mL) was placed, in the other limb a solution of triphenylmethylium perchlorate (20 mg, 0.06 mmol) in dichloromethane (1 mL). Nitromethane (2 mL) was twice distilled into, and lyophilized from the limb with reagents followed by drying for 3 h in vacuo (0.06 Pa). Dichloromethane (2 mL) was distilled into both limbs of the tube, and the solutions were mixed and kept overnight at room temperature with exclusion of light. The mixture was treated with pyridine (2 mL), diluted with dichloromethane (50 mL), and washed with saturated aqueous NaHCO₃. The organic layer was dried and evaporated. Purification of the residue on a column of silica gel (60 \times 2.5 cm; 4:1 toluene-ethyl acetate) gave **11** (136 mg, 64%), colorless syrup, $[\alpha]_{D}^{20}$ -32° (c 1.1, chloroform); ¹H-n.m.r.: δ 8.10–8.05 (m, 2 H, arom.), 7.63–7.42 (m, 3 H, arom.), 5.51 (dd, 1 H, $J_{2'3'} \sim 5.0$, $J_{3'4'} \sim 6.5$ Hz, H-3'), 5.37 (d, 1 H, H-2'), 5.24 (dd, 1 H, $J_{2,3} \sim 5.0$, $J_{3,4} \sim 7.0$ Hz, H-3), 5.17 (dd, 1 H, $J_{1,2} \sim 1.0$ Hz, H-2), 5.14 (s, 1 H, H-1'), 4.88 (s, 1 H, H-1), 4.60-4.41 (m, 3 H, H-4', 5'a, 5'b), 4.23 (ddd, 1 H, $J_{4.5a} \sim 3.5$, $J_{4.5b} \sim 7.0$ Hz, H-4), 3.89 (dd, 1 H, $J_{5a,5b} \sim 11.0$ Hz, H-5a), 3.54 (dd, 1 H, H-5b), 3.37 (s, 1 H, CH₃O), 2.13, 2.09, 2.03, and 1.99 (s, 12 H, 4 CH₃CO).

Anal. Calc. for C₂₆H₃₂O₁₄: C, 54.93; H, 5.67. Found: C, 54.94; H, 5.67.

Methyl 5-O- β -D-ribofuranosyl- β -D-ribofuranoside (12). — A solution of 11 (70.8 mg) in dry methanol (5 mL) was stirred with 0.1M methanolic sodium methoxide (1 mL) for 12 h at room temperature. The mixture was made neutral by addition of Dowex 50 (H⁺) cation-exchange resin, filtered, and evaporated. The residue was extracted with diethyl ether (3 × 5 mL) and dried to give 12, yield 35 mg (95%), colorless syrup, $[\alpha]_{D}^{20}$ -23.5° (c 1.5, water); ¹H-n.m.r. and ¹³C-n.m.r., see Tables I and II.

Methyl 3-O-acetyl-5-O-benzoyl-2-O-(2,3-di-O-acetyl-5-O-benzoyl- β -D-ribofuranosyl)- β -D-ribofuranoside (13). — This compound was prepared from 9 (320 mg, 0.58 mmol) and 3 (243 mg, 0.70 mmol) as described for 11; purification of the residue on a column of silica gel (60 × 2.5 cm; 4:1 toluene-ethyl acetate) gave 13, yield 260 mg (71%), colorless syrup, $[\alpha]_{D}^{20}$ +10° (c 0.6, chloroform); ¹H-n.m.r.: δ 8.13-8.05 (m, 4 H, arom), 7.61–7.41 (m, 6 H, arom.), 5.44' (dd, 1 H, $J_{3',4'} \sim 7.0$, $J_{3',2'} \sim 5.0$ Hz, H-3'), 5.31 (dd, 1 H, $J_{1',2'} \sim 1.0$ Hz, H-2'), 5.17 (dd, $J_{2,3} \sim 5.0$, $J_{3,4}$ ~7.0 Hz, H-3), 5.08 (d, 1 H, H-1'), 5.00 (s, 1 H, H-1), 4.60-4.30 (m, 7 H, H-2,4,5a,5b,4',5'a,5'b), 3.22 (s, 3 H, CH₃O), 2.12, 2.11, and 2.05 (s, 9 H, 3 CH₃CO). *Anal.* Calc. for $C_{31}H_{34}O_{14}$: C, 59.05; H, 5.43. Found: C, 59.77; H, 5.34.

Methyl 2-O- β -D-ribofuranosyl- β -D-ribofuranoside (14). — A solution of 13 (100 mg) in dry methanol (10 mL) was stirred with 0.1M methanolic sodium methoxide for 17 h at room temperature. The mixture was made neutral by addition of Dowex 50 (H⁺) cation-exchange resin, filtered, and evaporated. The residue was extracted with diethyl ether (3 × 10 mL), and the extract evaporated (yield 40 mg, 87%), colorless syrup, $[\alpha]_D^{20} - 69^\circ$ (c 0.85, methanol), $[\alpha]_D^{20} - 54^\circ$ (c 1.0, water); ¹H-n.m.r. and ¹³C-n.m.r., see Tables I and II.

Methyl 2-O-*acetyl*-5-O-*benzoyl*-3-O-(2,3-*di*-O-*acetyl*-5-O-*benzoyl*-β-D-*ribofuranosyl*)-β-D-*ribofuranoside* (**15**). — The preparation of **15** was similar to that of **11**; **10** (275 mg) and **3** (347 mg) gave 204 mg (65%) of **15** as a colorless syrup, $[\alpha]_{5}^{20}$ -24° (*c* 0.85, chloroform); 'H-n.m.r.: δ 8.12–8.05 (m, 4 H, arom.), 7.63–7.41 (m, 6 H, arom.), 5.36 (dd, 1 H, $J_{2',3'} \sim 5.0$, $J_{3',4'} \sim 6.0$ Hz, H-3'), 5.29 (dd, 1 H, $J_{1',2'}$ ~1.5 Hz, H-2'), 5.20 (d, 1 H, $J_{2,3} \sim 5.0$ Hz, H-2), 5.16 (d, 1 H, H-1'), 4.84 (s, 1 H, H-1), 4.63–4.31 (m, 7 H, H-3,4,5a,5b,4',5'a,5'b), 3.31 (s, 3 H, CH₃O), 2.13, 2.08, and 2.01 (s, 9 H, 3 CH₃CO).

Anal. Calc. for C₃₁H₃₄O₁₄: C, 59.05; H, 5.43. Found: C, 59.79; H, 5.44.

Methyl 3-O- β -D-ribofuranosyl- β -D-ribofuranoside (16). — A solution of 15 (80 mg) in dry methanol (5 mL) was treated with 0.1M methanolic sodium methoxide (1 mL) for 6 h at room temperature. The mixture was made neutral by addition of Dowex 50 (H⁺) cation-exchange resin, filtered, and evaporated. The residue was extracted with diethyl ether (3 × 10 mL), the extract was discarded, and the residue crystallized from methanol (yield 35 mg, 93%), colorless needles, m.p. 172–173°, $[\alpha]_{D}^{20}$ –67° (c 0.5, water); ¹H-n.m.r. and ¹³C-n.m.r. see Tables I and II.

ACKNOWLEDGMENT

The authors are grateful for financial support from the Fonds zur Förderung der wissenschaftlichen Forschung (Projekt P 5550).

REFERENCES

- 1 V. I. BETANELI, M. V. OVCHINNIKOV, L. V. BACKINOWSKY, AND N. K. KOCHETKOV, Carbohydr. Res., 68 (1979) c11-c13.
- 2 V. I. BETANELI, M. V. OVCHINNIKOV, L. V. BACKINOWSKY, AND N. K. KOCHETKOV, Carbohydr. Res., 76 (1979) 252-256.
- 3 N. K. KOCHETKOV, V. I. BETANELI, M. V. OVCHINNIKOV, AND L. V. BACKINOWSKY, *Tetrahedron*, 37 (1981) 149–156.
- 4 L. V. BACKINOWSKY, S. A. NEPOGOD'EV, AND N. K. KOCHETKOV, *Carbohydr. Res.*, 137 (1985) c1-c3.
- 5 N. K. KOCHETKOV, N. E. BYRAMOVA, Y. E. TSVETKOV, AND L. V. BACKINOWSKY, Tetrahedron, 41 (1985) 3363-3375.
- 6 N. E. BYRAMOVA, Y. E. TSVETKOV, L. V. BACKINOWSKY, AND N. K. KOCHETKOV, Carbohydr. Res., 137 (1985) C8-C13.

- 7 G. W. KENNER, B. LYTHGOE, AND A. R. TODD, J. Chem. Soc., (1948) 957-964.
- 8 H. FOLLMANN AND H. P. C. HOGENKAMP, J. Am. Chem. Soc., 92 (1970) 671-677.
- 9 K. UTIMOTO AND T. HORIIE, Tetrahedron Lett., 23 (1982) 237-238.
- 10 F. G. DE LAS HERAS AND P. FERNÁNDEZ-RESA, J. Chem. Soc., Perkin Trans. 1, (1982) 903-907.
- 11 L. V. BACKINOWSKY, S. A. NEPOGOD'EV, A. S. SHASHKOV, AND N. K. KOCHETKOV, Carbohydr. Res., 138 (1985) 41-54.
- 12 S. HANESSIAN AND A. P. A. STAUB, Methods Carbohydr. Chem., 7 (1976) 63-67.
- 13 J. A. MONTGOMERY AND H. J. THOMAS, J. Am. Chem. Soc., 87 (1965) 5442-5447.
- 14 J. D. STEVENS AND H. G. FLETCHER, JR., J. Org. Chem., 33 (1968) 1799-1803.
- 15 P. KOSMA, G. SCHULZ, AND F. M. UNGER, Carbohydr. Res., 132 (1984) 261-274.
- 16 A. NESZMELYI, P. KOSMA, R. CHRISTIAN, G. SCHULZ, AND F. M. UNGER, Carbohydr. Res., 139 (1985) 13-22.
- 17 P. A. GORIN AND M. MAZUREK, Carbohydr. Res., 48 (1976) 171-186.
- 18 R. G. S. RITCHIE AND A. S. PERLIN, Carbohydr. Res., 55 (1977) 121-128.
- 19 E. STAHL AND U. KALTENBACH, J. Chromatogr., 5 (1961) 351-355.