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ABSTRACT: A chiral three-membered ring Cα,α-disubsti-
tuted α-amino acid (R,R)-Ac3c

dMOM, in which the α-carbon is
not a chiral center, but two side chain β-carbons are chiral
centers, was synthesized from dimethyl L-(+)-tartrate, and its
homopeptides were prepared. X-ray crystallographic analysis
of (R,R)-Ac3c

dMOM pentapeptide showed bent left-handed
(M) 310-helical structures with an unusual intramolecular
hydrogen bond of the N−H···O (ethereal) type. The left-
handedness of the bent helices was exclusively controlled by the side-chain β-carbon chiral centers.

The design of secondary structures of peptides and/or
foldamers1 is attracting marked attention from organic

and medicinal chemists because such structures are invaluable
for developing chiral catalysts,2 biological tools,3 and drug
candidates.4 Cα,α-Disubstituted α-amino acids (dAAs) are
known as one type of building block for the construction of
foldamers forming 310-helix, α-helix, and planar structures.5

Among dAAs, cyclic dAAs are known to induce helical
structures of their peptides.6

We previously reported the effect of side-chain chiral centers
of cyclic dAAs on their homopeptide conformations.
Homopeptides composed of a chiral five-membered ring
dAA (S,S)-Ac5c

dOM with two side chain chiral centers
preferentially formed left-handed (M) helical structures
without an α-chiral center.7 Contrary to the one-handed
helical structure of (S,S)-Ac5c

dOM homopeptides, the homo-
peptides composed of a five,six-membered bicyclic ring dAA
(R,R)-Ab5,6=c with two side-chain chiral centers,8 a four-
membered ring dAA (R,R)-Ac4c

3BD with a chiral acetal
moiety,9 or a six-membered ring dAA (R,R)-Ac6c

35dBu with
two chiral acetal moieties10 showed uncontrolled right-handed
(P) and left-handed (M) helical-screw structures.
Here, we designed a chiral three-membered ring dAA,

(R,R)-1-amino-2,3-bis(methoxymethyl)cyclopropanecarboxylic
acid (Ac3c

dMOM). The Ac3c
dMOM has two methoxymethyl

(MOM) substituents at the side-chain β-positions of cyclo-
propane, and the β-carbons become chiral centers without an
α-carbon chiral center. In the Ac3c

dMOM peptide, the distance
between side-chain chiral centers and the peptide backbone
become shorter than those of five- and six-membered-ring
amino acids. Although we reported that similar five-membered

ring amino acid (S,S)-Ac5c
dOM homopeptides with methoxy

groups formed left-handed (M) 310- and α-helices without an
intramolecular hydrogen bond of the N−H···O (ethereal)
type,7 the Ac3c

dMOM pentapeptide described here shows
unprecedentedly left-handed (M) 310-helices interrupted by
an N−H···O (ethereal) type intramolecular hydrogen bond.
No such bent helical structures bearing the N−H···O
(ethereal) type intramolecular hydrogen bond have been
reported.
The three-membered ring dAA, (R,R)-Ac3c

dMOM, was
synthesized as follows. At first, dimethyl L-(+)-tartrate was
converted into a chiral diol 3 with two MOM substituents
according to the reported procedures (Scheme 1).11 Then the
diol 3 was transformed into a cyclic sulfate 4 by treatment with
thionyl chloride and subsequent oxidation with RuCl3 and
NaIO4 at a quantitative yield.11 A three-membered ring was
constructed by dialkylation of dimethyl malonate with the
cyclic sulfate 4.12 At the beginning, the cyclization yield of 5
was 19% using K2CO3 as a base, and then the yield was
improved to 56% using Cs2CO3 in DMF. Monohydrolysis of
cyclic diester 5, followed by Curtius rearrangement with
diphenylphosphoryl azide (DPPA) and workup with BnOH,
gave a benzyloxylcarbonyl (Cbz)-protected (R,R)-Ac3c

dMOM-
OMe 6 at a 71% yield. Hydrogenolysis of 6 using H2/5% Pd−
C gave an N-terminal free amine 8 at a quantitative yield, and
the reaction in the presence of (Boc)2O produced a tert-
butoxylcarbonyl (Boc)-protected Boc-{(R,R)-Ac3c

dMOM}-OMe
7 at a 72% yield. Hydrolysis of a methyl (Me) ester in 7 in
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alkaline solution afforded a C-terminal free Boc-(R,R)-
Ac3c

dMOM-OH 9 at a quantitative yield.
The N-terminal free H-{(R,R)-Ac3c

dMOM}-OMe 8 was
coupled with C-terminal free Boc-{(R,R)-Ac3c

dMOM}-OH 9
using O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium
hexafluorophosphate (HATU) and 1-hydroxy-7-azabenzotria-
zole (HOAt) to give a (R,R)-Ac3c

dMOM dipeptide 10 at a 57%
yield. The peptide chain was elongated in the C- to N-terminal
direction by an iterative sequence of deprotection of a Boc-
protecting group and subsequent coupling with 9 using HATU
and HOAt up to a hexapeptide.
The FT-IR absorption spectra in the N−H stretching

(amide A) region of (R,R)-Ac3c
dMOM homopeptides were

measured in CDCl3 solution (Figure S1). Absorptions
characteristic of the helical structure at 3420−3430 cm−1

(intramolecular hydrogen bond free N−H at the N-terminus)
and 3320−3370 cm−1 (intramolecular hydrogen bond of the
N−H···OC type) were observed.13 The NOESY NMR
spectrum of 13 in CDCl3 solution showed dN1N2 and dN2N3
correlations but did not show other dNN correlations. The
ROESY NMR spectrum of 14 showed dN1N2, dN2N3, and dN3N4
but neither dN4N5 nor dN5N6 (Figure S2). These FT-IR
absorption and 2D NMR spectra suggest the formation of a
helical secondary structure.
The circular dichroism (CD) spectra of homopeptides (n =

4−6) were measured in 2,2,2-trifluoroethanol solution (0.05
mM) (Figure S3). The CD spectra showed a negative
maximum at 222 nm and a positive maximum at 205 nm,
but these CD spectra do not yield valuable information for
secondary structure analysis because the peptide length may be
too short.14

The (R,R)-Ac3c
dMOM pentapeptide 13 became crystals

suitable for X-ray crystallographic analysis by recrystallization
from MeOH/EtOAc/n-hexane. The structure was solved in a
monoclinic P21 space group, and two crystallographically
independent molecules A and B (both distorted left-handed
310-helices) together with disordered EtOAc and water
molecules existed in the asymmetric unit (Figure 1 and
Table S1).15 The peptide-backbone structures of molecule A
and B are well-matched, as shown by superimposition of the
structures.

Two intramolecular hydrogen bonds of the N(i+3)−H···O =
C(i) (i = 0 and 1) i ← i+3 type at the N-terminal side,
corresponding to the 310-helix,

16,17 existed in molecules A and
B. Additionally, one intramolecular hydrogen bond between
the N(5)−H of the peptide backbone and the oxygen of the
MeO substituent at the side-chain cyclopropane of residue (3)
was unprecedentedly observed (Table 1 and Figure 1b).
Although intramolecular hydrogen bonds between the oxygen
of the side-chain ethereal functional group and the N−H of the
peptide backbone of the same amino acid residue or of the
adjacent amino acid residue have already been reported,10,15

no such hydrogen bond between the oxygen of the side-chain
ethereal function of the amino acid and the remote N−H of
the main chain has been reported.
Table 2 shows the selected torsion angles of (R,R)-Ac3c

dMOM

pentapeptide 13. The average ϕ and ψ torsion angles of amino
acid residues (1−3) were +66.2 and +17.2 in molecule A and
+65.8 and +16.8 in molecule B, respectively. These values
match those of the left-handed (M) 310-helical conformation.16

The ψ torsion angles of (R,R)-Ac3c
dMOM residues were smaller

than the normal ψ torsion angle of 310-helix. This may be
because the Ac3c and (R,R)-Ac3c

dMOM residues prefer to form
“bridge” region of the conformational map.17,18 It is note-
worthy that the ϕ and ψ torsion angles of (R,R)-Ac3c

dMOM (4)
were −94.8 and +17.5 in molecule A and −89.0 and +13.2 in

Scheme 1. Synthesis of (R,R)-Ac3c
dMOM and Its

Homopeptides

Figure 1. (a) Bent left-handed (M) helices of pentapeptide 13
(solvents and disordered OMe omitted for clarification). (b)
Superimposed structure of molecules A and B with intramolecular
hydrogen bonds (H bond of N(5)−H···O (3) (ethereal) type in
green).
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molecule B, respectively, and thus, the peptide-backbone
structure was largely bent in this residue (4). The twists of ϕ
and ψ torsion angles of the penultimate residue described here
have not been reported. These twisted torsion angles might be
influenced by the intramolecular hydrogen bond of the N(5)−
H···OMe(3) type between the peptide backbone N−H and the
side-chain ethereal O atom.15

Although the reversal of the C-terminal residue ϕ and ψ
torsion angles of dAA homopeptides to those of the preceding
residues has often been reported19 and achiral Ac3c
homopeptides forming a characteristic C-terminal semi-
extended conformation (ϕ 90, ψ 180) have also been
reported,18 the C-terminal residue of the chiral (R,R)-
Ac3c

dMOM pentapeptide formed normal left-handed ϕ and ψ
torsion angles (A: ϕ +71.0, ψ +21.9; B: ϕ +62.7, ψ +28.1), but
not a semiextended conformation. The exocyclic τ (N−Cα−
C′) bond angles of achiral three-membered ring amino acid
Ac3c residues in peptides have been reported to become larger
than that of the regular tetrahedral value.18 Similarly, the
average τ (N−Cα−C′) bond angle of the (R,R)-Ac3c

dMOM

pentapeptide was 115.7°, which is larger than that of the ideal
tetrahedral angle 109.5° (Table S2). In addition, the N−Cα

and Cα−C′ bond lengths became shorter than those of normal
peptides because of the conjugating ability of the three-
membered ring (data not shown).18

By calculations using MacroModel, 20000 conformations of
hexapeptide Cbz-{(R,R)-Ac3c

dMOM}6-OMe were produced
with Monte Carlo methods and minimized with the
AMBER* (H2O) force field.20 The left-handed (M) 310-helix
was obtained as a global minimum energy conformation (0
kcal/mol), and the distorted right-handed (P) 310-helix was
gained as a local minimum energy conformation (+10.15 kcal/
mol) (Figure S4). These results match the left-handed
structure determined by X-ray crystallographic analysis, but
the calculated left-handed (M) 310-helix was not bent, and no
intramolecular hydrogen bond with an N−H···O (ethereal)
type was observed.
The secondary structure of (R,R)-Ac3c

dMOM homochiral
pentapeptide 13 in the crystalline state was unambiguously
determined to be bent left-handed (M) 310-helices. The left-
handedness of the helix was exclusively controlled by the chiral
centers at the side-chain β-carbons of cyclopropane. These
results are in contrast to those of the uncontrolled helical screw
direction of (R,R)-Ac4c

3BD,9 (R,R)-Ab5,6=c,
8 and (R,R)-

Ac6c
35 dBu homopeptides10 but are in accordance with the

one-handed helical screw of (S,S)-Ac5c
dOM homopeptides.7

Two steric factors could be considered as controlling the
helical-screw direction into one-handedness. One is a steric
factor, in which the MOM substituent on the side-chain β-
carbon directly affects the torsion angles of the same amino
acid residue. The cyclopropylcarbonyl parts showed a tendency
to form bisected s-cis conformations,21 and the repulsion
between the oxygen of C′O and the γ-carbon of MOM
might affect the ψ torsion angles. The other is the steric
repulsion between the side-chain MOM substituents of the
amino acid residues (i) and (i+3) in the 310-helices. The
repulsion may be different between right- and left-handed
helices. In the case of the chiral (R,R)-Ac3c

dPh (c3diPhe)-
containing peptide reported by Toniolo, Cativiela, and co-
workers,22 the steric repulsion between the Ph-substituents of
the amino acid residues (i) and (i+3) was proposed to be one
of the important factors controlling the helical-screw sense to
one-handedness. However, the MOM substituent of (R,R)-
Ac3c

dMOM is smaller than the Ph substituent of (R,R)-Ac3c
dPh,

and the effect of this steric repulsion between the MOM of
amino acid residues (i) and (i+3) may be smaller. Thus, the γ-
carbon of MOM, and additionally, the methoxy of the MOM
substituent on the (R,R)-Ac3c

dMOM residue would directly
influence the same amino acid ψ torsion angles, and the helical-
screw direction might be controlled as left-handed (Figure 2).
Certainly, nonsteric factors such as the hydrophilicity and
electronic density of the methoxy group might also affect the
secondary structure.

Table 1. Intra- and Intermolecular H-Bond Parameters for
Boc-{(R,R)-Ac3c

dMOM}5-OMe (13)

peptide
donor
D−H acceptor A

dist (Å)
D···A

angle (deg)
D−H···A

symmetry
operations

mol A N3−H O0 2.99 161 x, y, z
N4−H O1 3.03 166 x, y, z
N5−H O3MOM 2.94 154 x, y, z
N1′−H O5 2.84 154 1 − x, 1/2 + y,

1 − z
N2′−H O6 2.90 136 1 − x, 1/2 + y,

1 − z
Ow−H O4 2.81 178 1 − x, 1/2 + y,

1 − z
mol B N3−H O0 3.04 160 x, y, z

N4−H O1 2.89 163 x, y, z
N5−H O3MOM 3.06 150 x, y, z
N1′−H O5 2.74 158 −x, 1/2 + y,

2 − z
N2′−H O6 3.16 132 −x, 1/2 + y,

2 − z

Table 2. Selected Torsion Angles ω, ϕ, and ψ (deg) for Boc-
{(R,R)-Ac3c

dMOM}5-OMe (13), As Determined by X-ray
Crystallographic Analysis16,18

torsion angle molecule A molecule B

θ0 −176.4 −157.8
ω0 −160.8 174.7
ϕ1 73.9 70.7
ψ1 19.6 16.3
ω1 −173.1 −172.6
ϕ2 65.5 63.0
ψ2 9.4 15.6
ω2 −167.9 −169.1
ϕ3 59.2 63.8
ψ3 22.4 18.3
ω3 179.1 177.1
ϕ4 −94.8 −89.0
ψ4 17.5 13.2
ω4 −179.6 179.6
ϕ5 71.0 62.7
ψ5 21.9 28.1
ω5 178.6 179.5

Figure 2. Steric repulsion between the γ-carbon of MOM and oxygen
of the C′O group of the same residue.
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In summary, we synthesized a chiral cyclopropane-based
dAA, (R,R)-Ac3c

dMOM with two MOM-substituents at the β-
carbons and prepared its homopeptides up to a hexapeptide.
The (R,R)-Ac3c

dMOM hexapeptide is the longest homopeptide
constructed from a chiral three-membered ring dAA. The
(R,R)-Ac3c

dMOM pentapeptide preferentially formed the bent
left-handed (M) 310-helical structures that were exclusively
controlled by the side-chain chiral centers. The 310-helical
structure of a homopeptide interrupted by an intramolecular
hydrogen bond of the N(5)−H···O (3) (ethereal) type has not
been reported, and the structure would be useful for designing
functional molecules such as chiral peptide catalysts, cell-
penetrating peptides, and protein−protein interaction inhib-
itors.4
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