LETTERS 2000 Vol. 2, No. 18 2909–2912

ORGANIC

Highly Functionalized Bicyclo[2.2.2]octenone-Fused [60]Fullerenes from Masked *o*-Benzoquinones and C₆₀

Chi-Feng Yen, Rama Krishna Peddinti, and Chun-Chen Liao*

Department of Chemistry, National Tsing Hua University, Hsinchu-300, Taiwan ccliao@mx.nthu.edu.tw

Received July 26, 2000

ABSTRACT

The Diels-Alder reactions of masked *o*-benzoquinones (MOBs) with [60]fullerene, affording novel and highly functionalized bicyclo[2.2.2]octenone-fused [60]fullerene derivatives, are described.

Since the discovery¹ and macroscale preparation² of C₆₀, numerous reactions have been developed to explore the potentially rich and diverse chemistry of this new and spherical allotrope of carbon.³ Although a number of protocols have been devised, cycloaddition reactions⁴ proved to be one of the most outstanding and expeditious methods for the functionalization of [60]fullerene. The [4 + 2] cycloaddition is of special significance in this context.^{4.5} C₆₀ with a low-lying LUMO⁶ behaves as a good dienophile, reacting with a large variety of dienes, particularly with electron-rich dienes, to afford selectively the adducts on 6,6-ring junctions. In some cases these cycloadducts undergo a

(5) Sliwa, W. Fullerene Sci. Technol. 1997, 5, 1133.

(6) (a) Haddon, R. C. Acc. Chem. Res. **1992**, 25, 127. (b) Wilson, S. R.; Lu, Q. Tetrahedron Lett. **1993**, 34, 8043. facile retro-Diels—Alder reaction as a result of their low thermodynamic stability.^{3a,7} However, cycloreversion could be prevented by stabilizing the cycloadducts through incorporation of the formed double bond into an aromatic ring, as in the cases of *o*-quinonedimethanes⁸ and isobenzofuran,⁹ by the extrusion of CO,^{7a} or by converting the double bond into a single bond, as in the cases of Danishefsky's diene,^{6b} 2-silyloxy-1,3-butadienes,¹⁰ and 4-hydroxytropones.^{11a}

Recently, electron-deficient dienes such as tropones,¹¹ 1,3dienes bearing an electron-withdrawing group,^{10b,12} and 2-pyrone¹³ were employed in the Diels–Alder reactions of electron-poor polyolefin C₆₀, and the cycloadducts were found to be quite stable. In this communication we report

(12) (a) Liou, K.-F.; Hsiao, T.-Y.; Cheng, C.-H.; *Fullerene Sci. Technol.* **1998**, *6*, 351. (b) Ohno, M.; Shirakawa, Y.; Eguchi, S. Synthesis **1998**, 1812.

(13) Mori, S.; Karita, T.; Komatsu, K.; Sugita, N.; Wan, T. S. M. Synth. Commun. 1997, 27, 1475.

⁽¹⁾ Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, E. E. *Nature* **1985**, *318*, 162.

^{(2) (}a) Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffmann, D. R. *Nature* **1990**, *347*, 354. (b) Kroto, H. W.; Allaf, A. W.; Balm, S. P. *Chem. Rev.* **1991**, *91*, 1213.

^{(3) (}a) Wudl, F. Acc. Chem. Res. **1992**, 25, 157. (b) Diederich, F.; Rubin, Y. Angew. Chem., Int. Ed. Engl. **1992**, 31, 1101. (c) Taylor, R. The Fullerenes; Kroto, H. W., Walton, D. R. M., Eds.; Cambrige University Press: Cambridge, U.K., 1993; p 87. (d) Hirsch, A. The Chemistry of the Fullerenes; Thieme: Stuttgart, 1994. (e) Hirsch, A. Top. Curr. Chem. **1999**, 199, 11. (f) Rubin, Y. Top. Curr. Chem. **1999**, 199, 67.

^{(4) (}a) Hirsch, A. *The Chemistry of the Fullerenes*; Thieme: Stuttgart, 1994; p 79. (b) Hirsch, A. *Synthesis* **1995**, 895. (c) Sliwa, W. *Fullerene Sci. Technol.* **1995**, *3*, 243. (d) Averdung, J.; Torres-Gracia, G.; Luftmann, H.; Schlachter, I.; Mattay, J. *Fullerene Sci. Technol.* **1996**, *4*, 633.

^{(7) (}a) Rubin, Y.; Khan, S.; Freedberg, D. I.; Yeretzian, C. J. Am. Chem. Soc. **1993**, 115, 344. (b) Tsuda, M.; Ishida, T.; Nogami, T.; Kurono, S.; Ohashi, M. J. Chem. Soc., Chem. Commun. **1993**, 1296.

⁽⁸⁾ Liu, J.-H.; Wu, A.-T.; Huang, M.-H.; Wu, C.-W.; Chung, W.-S. J. Org. Chem. 2000, 65, 3395 and references therein.

⁽⁹⁾ Prato, M.; Suzuki, T.; Foroudian, H.; Li, Q.; Khemani, K.; Wudl, F. J. Am. Chem. Soc. **1993**, 115, 1594.

^{(10) (}a) An, Y.-Z.; Anderson, J. L.; Rubin, Y. J. Org. Chem. **1993**, 58, 4799. (b) Ohno, M.; Azuma, T.; Kojima, S.; Shirakawa, Y.; Eguchi, S. *Tetrahedron* **1996**, 52, 4983.

^{(11) (}a) Mori, A.; Takamori, Y.; Takeshita, H. *Chem. Lett.* **1997**, 395.
(b) Takeshita, H.; Liu, J.-F.; Kato, N.; Mori, A.; Isobe, R. *J. Chem. Soc., Perkin Trans. 1* **1994**, 1433.

the Diels-Alder reactions of masked *o*-benzoquinones (MOBs), which are known as electron-deficient dienes, with C_{60} to obtain novel and highly functionalized bicyclo[2.2.2]-octenone-fused [60]fullerenes.

Masked *o*-benzoquinones, a class of cyclohexa-2,4-dienones, can be easily generated in situ by the oxidation of readily available 2-methoxyphenols with hypervalent iodine reagents such as diacetoxyiodobenzene (DAIB) and bis-(trifluoroacetoxy)iodobenzene in MeOH. Over the past 10 years we have been investigating the inter-^{14–17} and intramolecular^{14,18} Diels–Alder reactions of MOBs, and their synthetic potential¹⁹ has been explored. Despite the fact that MOBs are electron-deficient, they readily undergo Diels– Alder cycloadditions with both electron-poor¹⁶ and electronrich²⁰ dienophiles. It occurred to us that if MOBs, being electron-deficient dienes, participate in the [4 + 2] cycloaddition with [60]fullerene, easy access to stable bicyclo[2.2.2]octenone-fused [60]fullerenes could be achieved. Therefore, work was carried out in this direction.

Unlike other cyclohexa-2,4-dienones, MOBs are highly reactive and readily undergo dimerization,^{16,21} leaving less room for their isolation (Figure 1). To circumvent this

Figure 1. Structures of MOBs and their dimers.

obstacle, the Diels–Alder reactions could be carried out by slowly generating MOBs in the presence of a dienophile. However, owing to the solubilty problems associated with C_{60} under the reaction conditions for the in situ generation of MOBs, it was not possible to perform the cycloaddition as mentioned above. Alternatively, toluene solutions of unstable MOBs, which are generated in MeOH at 0 °C, can be used for the cycloaddition step. The reactive MOB **1a** was first generated, and its toluene solution^{22a} was used for the [4 + 2] cycloaddition with C₆₀ at three different temperatures. While the reactions performed at 30 and 60 °C produced the desired cycloadduct **3a** in poor yields together with a dimer of **1a**, the reaction carried out at 110 °C resulted in the exclusive formation of dimer of **1a**. In contrast to **1a**, MOBs **1b** and **1c** exhibited improved reactivity toward C₆₀ at 110 °C and afforded the adducts **3b** and **3c** in acceptable yields.

To broaden the scope of these reactions, we have prepared a series of stable MOBs 1d-j. Thus, MOBs 1d-j were produced at 0 °C in MeOH by the oxidation of the corresponding 2-methoxyphenols 2d-j in the presence of DAIB and were isolated in very good to excellent yields.²³ The Diels–Alder reactions of MOBs 1d-h were carried out at different temperatures in toluene to furnish cycloadducts $3d-h^{22b}$ (Scheme 1), and the results are summarized in Table 1.

The gross structures of adducts 3a-h were established from their IR, UV-vis, ¹H (600 MHz) and ¹³C NMR (150 MHz), DEPT, and low- and high-resolution FAB-MS spectral analyses. The cycloadducts 3a-h exhibit IR absorption at ca. 526 cm⁻¹ and a weak band in UV-vis spectra at ca. 432 nm, indicating the characteristic features of dihydrofullerenes.^{7a,24} In the ¹³C NMR spectra, the fullerene bridgehead

(23) For the synthesis of MOBs **1e** and **1f**, see: Lai, C.-H.; Shen, Y.-L.; Liao C.-C. *Synlett* **1997**, 1351. Synthesis of other stable MOBs will be published elsewhere.

(24) (a) Taylor, R.; Walton, D. R. M. *Nature* **1993**, *363*, 685. (b) Hirsch, A.; Grösser, T.; Skiebe, A.; Soi, A. *Chem. Ber.* **1993**, *126*, 1061. (c) Isaacs, L.; Wehrsig, A.; Diderich, F. *Helv. Chim. Acta* **1993**, *76*, 1231.

⁽¹⁴⁾ Chu, C.-S.; Lee, T.-H.; Liao, C.-C. Synlett 1994, 635.

⁽¹⁵⁾ Chen, C.-H.; Rao, P. D.; Liao C.-C. J. Am. Chem. Soc. 1998, 120, 13254.

⁽¹⁶⁾ Liao, C.-C.; Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Ko. S.; Song, L.-D.; Shiao, H.-C. J. Org. Chem. 1999, 64, 4102.

⁽¹⁷⁾ Hsieh, M.-F.; Rao, P. D.; Liao, C.-C. *Chem. Commun.* 1999, 1441.
(18) Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Song, L.-D.; Liao, C.-C. J. Org. *Chem.* 1999, 64, 4111.

⁽¹⁹⁾ Liu, W.-C.; Liao C.-C. Chem. Commun. 1999, 117 and references therein.

⁽²⁰⁾ Gao, S.-Y.; Lin, Y.-L.; Rao, P. D.; Liao, C.-C. Synlett **2000**, 421. (21) Andersson, G.; Berntsson, P. Acta Chem. Scand. B **1975**, 29, 948.

⁽²²⁾ **General Procedure.** (a) To a suspension of DAIB (3.3 equiv) and KHCO₃ (7 equiv) in MeOH (3 mL) was added a solution of phenols 2a-c (3 equiv) in MeOH (2 mL) in one portion at 0 °C under nitrogen. After 5 min of stirring, the reaction mixture was diluted with CH₂Cl₂, washed with brine, and dried over anhydrous MgSO₄. The thus obtained solution was further diluted with toluene (10 mL), C₆₀ (1 equiv., 50 mg, 0.069 mM) was added, and the low boiling solvents were removed under reduced

pressure. Then the reaction was continued as mentioned in Table 1. After the reaction was complete, the reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography with toluene as an eluent to furnish the pure cycloadducts $3\mathbf{a}-\mathbf{c}$. (b) A solution of MOBs $1\mathbf{d}-\mathbf{j}$ (1.2 equiv) and C_{60} (1 equiv, 50 mg, 0.069 mM) in toluene (1,2-dichlorobenzene for the reactions at 180 °C) (10 mL) was stirred at the appropriate temperature over a period of time (Table 1). The solvent was removed under reduced pressure at room temperature [removal of toluene at above room temperature provided monoadducts $3\mathbf{d}-\mathbf{h}$ in low yields as a result of (further) formation of bisadducts with unreacted MOBs under high concentrations!], and the residue was purified as in the case of $3\mathbf{a}-\mathbf{c}$ to afford pure adducts $3\mathbf{d}-\mathbf{h}$.

entry	МОВ	reaction conditions ^b	cycloadduct		yield ^c (%)	
1 2 3	MeO ₂ C OMe OMe	30 °C/ 8 h 60 °C/ 6 h 110 °C/ 3 h	MeO OMe OCO ₂ Me	3a	8 15 0	
4 5 6	$\begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}$	30 °C/ 36 h 60 °C/ 12 h 110 °C/ 6 h	MeO OMe	3b	44 52 62	
7 8 9	$\begin{bmatrix} & & OMe \\ & & OMe \\ Br & & O \end{bmatrix}$	30 °C/ 48 h 60 °C/ 24 h 110 °C/ 12 h	MeO OMe	3c	21 34 43	
10 11 12	OMe OMe 0 1d	30 °C/ 72 h 60 °C/ 24 h 110 °C/ 12 h	MeO OMe	3d	69 54 37 ^d	
13 14 15	Br OMe OMe OMe	30 °C/ 72 h 60 °C/ 6 h 110 °C/ 3 h	MeO OMe OBr	3e	54 42 ^d 0 ^d	
16 17 18	Br OMe OMe	30 ^o C/ 72 h 60 ^o C/ 24 h 110 ^o C/ 12 h	MeO OMe OBr	3f	62 58 ^d 32 ^d	
19 20 21	1f OMe OMe OMe 1g	30 °C/ 96 h 60 °C/ 72 h 110 °C/ 18 h	MeO OMe	3g	42 53 ^d 62 ^d	
22 23 24	Br OMe OMe O O	30 °C/ 96 h 60 °C/ 72 h 110 °C/ 36 h	MeO OMe O Br	3h	53 56 ^d 76 ^d	
25 26 27	1h OMe OMe 1i	60 °C/ 72 h 110 °C/ 72 h 180 °C/ 48 h ^f	MeO OMe	3i	0 0 ^e trace ^{e,g}	

Table 1.	Bicyclo[2.2.2]octenone	-Fused [60]Fullerene	Derivatives 3 from	the Diels-Alder	Reactions of MOBs 1	1 and C_{60}
----------	------------------------	----------------------	--------------------	-----------------	---------------------	------------------

^{*a*} All reactions were carried out with MOBs (3 equiv for **1a**-**c** or 1.2 equiv for **1d**-**i**) and C₆₀ (1 equiv) in toluene unless otherwise specified; also see ref 22. ^{*b*} Temperature refers to oil bath. ^{*c*} Yields of pure and isolated adducts are based on consumed C₆₀. ^{*d*} Bisadducts were also obtained. ^{*e*} Part of MOB was aromatized. ^{*f*} Reaction was performed in 1,2-dichlorobenzene. ^{*g*} Observed in ¹H NMR spectrum of the crude reaction mixture.

quaternary sp³ carbon atoms appeared at ca. δ 66 and 69 (**3a**-e and **3g**) or ca. δ 68 and 72 (**3f** and **3h**), which indicates the closed transannular bond, confirming the 6–6 ring junction on the C₆₀ cage.^{7a,25} Of the 58 sp² carbons of the fullerene framework that are diastereotopic in nature owing to the introduction of chiral centers in the fused bicyclo[2.2.2]octenone system, ¹³C NMR spectra of **3a**-h showed only 49–56 peaks in the region δ 135–156 because of overlap of the rest of the signals. In the mass spectra, the parent ions of the cycloadducts are clearly observed, although the major peak in each spectrum is at m/z 720 corresponding to C₆₀⁺. In addition, the bicyclo[2.2.2]octenone system also showed characteristic signals at ca. δ 200 for carbonyl and ca. δ 97 for quaternary carbon with *gem* dimethoxy groups in ¹³C NMR for the adducts **3a**-**h**.

From Table 1, it is clear that the yields of the cycloadducts depend on the nature of MOBs and the reaction conditions employed. The ¹H NMR (400 MHz) spectra of the crude

samples revealed the compositon of the compounds formed during the reaction. In the cases of more reactive MOBs 1ac, which are unstable, large amounts of dimers were obtained along with fullerene derivatives; however, no unreacted MOBs were noticed. It is worth mentioning that MOB 1a, which exhibited very good reactivity with many other dienophiles, $^{14-17}$ failed to produce **3a** in good yields in the cycloaddition with C₆₀. This diminished reactivity of 1a appears to be due to electronic reasons. The stable MOBs 1d-f produced the Diels-Alder cycloadducts 3d-f in higher yields at 30 °C. The reactions of **1d**-**f** at higher temperatures resulted in lowering the yields of 3d-f and increasing the yields of bisadducts of C_{60} as a result of the enhanced Diels-Alder reactivity of 1d-f. The stable MOBs 1g and 1h require higher temperatures in order to furnish the adducts 3g and **3h**, respectively, in high yields, presumably because of the bulky ketal group. While MOB 1d produced noticeable amounts of dimer at low temperatures, MOBs 1e-h did not dimerize under the reaction conditions.

MOB 1i, having substitution at position 5, did not participate in the Diels–Alder reaction with C_{60} in toluene. However, the ¹H NMR (400 MHz) analysis of the crude reaction mixture from the reaction in 1,2-dichlorobenzene at 180 °C showed signals corresponding to the cycloadduct **3i**. The MOB 1j ($R_n = 5$ -CO₂Me) did not give the Diels–Alder adduct even at 180 °C, presumably because of steric and electronic factors. These results illustrate that 5-substituted MOBs are more stable and exhibit less Diels—Alder reactivity toward less reactive/bulky dienophiles. Our findings are in accordance with Andersson's observations on the Diels—Alder reactions of 5-methoxy-MOB.²⁶

Initially it was assumed that the low yields observed in some reactions might be due to the cycloreversion of the adducts **3**. To verify this assumption, cycloadduct **3e** was taken in toluene and 1,2-dichlorobenzene and stirred at 110 and 180 °C, respectively, for 24 h. However, **3e** was found to be unchanged, and neither the dimer of MOB nor bisadduct/higher adducts were observed, indicating that no retro-Diels-Alder reaction had taken place.

In conclusion, we have shown that masked *o*-benzoquinones, which are reactive cyclohexa-2,4-dienones, undergo Diels—Alder cycloadditions with [60]fullerene to produce hitherto unknown, stable, and highly functionalized bicyclo-[2.2.2]octenone derivatives. In light of the mild conditions and considerable generality, these reactions are certainly noteworthy. Because of their high functionality, compounds **3** will allow easy access to other derivatives. Such further derivatization is underway in our laboratory.

Acknowledgment. Financial support from the National Science Council (NSC) of the Republic of China is sincerely acknowledged. R.K.P. thanks NSC for a postdoctoral fellowship.

Supporting Information Available: ¹H and ¹³C NMR and DEPT spectra for compounds **3a**–**h**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL000198S

^{(25) (}a) Belik, P.; Gügel, A.; Spickermann, J.; Müllen, K. Angew. Chem., Int. Ed. Engl. **1993**, 32, 78. (b) Khan, S. I.; Oliver, A. M.; Paddon-Row: M. N.; Rubin, Y. J. Am. Chem. Soc. **1993**, 115, 4919. (c) Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. **1993**, 115, 9798. (d) Diederich, F.; Jonas, U.; Gramlich, V.; Herrmann, H.; Ringsdorf, H.; Thilgen, C. Helv. Chim. Acta **1993**, 76, 2445. (e) Kräutler, B.; Puchberger, M. Helv. Chim. Acta **1993**, 76, 1626.

⁽²⁶⁾ Andersson G. Acta Chem. Scand. B 1976, 30, 403.